New Zealand Journal of Ecology (2006) 30(2): 251- 259

Modelling environmental limits to light use efficiency for a canopy of two broad-leaved tree species with contrasting leaf habit

Research Article
Roger J. Dungan 1,2,3,*
David Whitehead 2
  1. Ecology and Entomology Group, Lincoln University, PO Box 83, Lincoln 8152, New Zealand
  2. Landcare Research, PO Box 69, Lincoln 8152, New Zealand
  3. Current address: School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
*  Corresponding author

We used outputs from a model of canopy carbon uptake [Dungan et al. (2004) Functional Ecology 18: 34–42] and measurements of irradiance (PAR, 400–700 nm) intercepted by the canopy to investigate the effect of daily changes in environmental conditions on daily light use efficiency, ε, for a canopy comprising two broadleaved New Zealand tree species with contrasting leaf habit. Irradiance absorbed by the canopy was 93% of the incident irradiance, and seasonal changes in the proportion of this absorbed by leaves of each species was estimated with a detailed model of leaf area phenology. Over the year, ε for semi-deciduous wineberry (Aristotelia serrata) was 0.43 g C MJ-1 PAR, with maximum and minimum values of 0.80 g C MJ-1 PAR and 0.07 g C MJ-1 PAR in summer and winter respectively. In contrast annual ε was 0.60 g C MJ-1 PAR for winter deciduous fuchsia, with a maximum value of 0.92 g C MJ-1 PAR in spring. The most important environmental regulator of ε for both species was τ, atmospheric transmissivity. Maximum values for ε were estimated on days when τ ≈0.2, on cloudy days in mid-summer. Limits to photosynthesis from restricted root-zone water availability were also important, showing that drought limitations can restrict ε even at a field site with annual rainfall of 4800 mm. Environmental limits to photosynthesis and ε have been investigated for only a few canopy tree species. Uncertainty in models of the national carbon budget required for reporting purposes would be reduced by considering the environmental regulation of ε for a wider range of tree species.