Vertical variation in flight activity of the lesser short-tailed bat in podocarp and beech forests, Central North Island, New Zealand
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
- Agriculture and Life Sciences Division, Lincoln University, Canterbury, New Zealand
- Department of Conservation, Private Bag, Turanga Place, Turangi 3353, New Zealand
Designing robust monitoring programmes for cryptic species is particularly difficult. Not detecting a species does not necessarily mean that it is absent from the sampling area. A conclusion of absence made in error can lead to misguided inferences about distribution, colonisation and local extinction estimates, which in turn affects where and how conservation actions are undertaken. It is therefore important to investigate monitoring techniques that reduce the non-detection rate of cryptic species. As habitat complexity plays an important role in the activity of bats within a forest, it was hypothesised that the amount of vegetative ‘clutter’ present at different heights within two different forest types affected the flight activity of lesser short-tailed bats (Mystacina tuberculata). This could affect detection of the species within different forest structures. To compare bat activity at three heights – top (22.0–25.0 m), middle (10.0–12.0 m) and bottom (1.5–2.0 m) – within a podocarp and a beech forest we used automatic bat monitors during January to March 2005. The number of bat passes was recorded at each height at two study areas within each forest and compared between forest types. The forest structure was described using the Recce method and vegetative cover estimated within the three height tiers sampled for bat activity. Within both forest types, the middle-level bat detectors logged the greatest amount of activity. However, differences between the forest types were most pronounced closer to the ground, where a high amount of activity was detected within the beech forest, and very little within the podocarp forest. This suggests that flight activity of lesser short-tailed bats may be affected by the level of vegetative clutter found at different heights within a forest. When designing monitoring programmes for lesser short-tailed bats, it is recommended that consideration be given to the forest structure and how this may affect detection of bat activity.