New Zealand Journal of Ecology (2006) 30(3): 295- 310

Wind damage and response in New Zealand forests: a review

Review Article
Timothy. J. Martin 1,2,*
John Ogden 1
  1. School of Geography and Environmental Science, The University of Auckland, Private Bag 9209, Auckland, New Zealand
  2. Current address: Wildland Consultants Ltd, PO Box 303-376, North Harbour, Auckland 075
*  Corresponding author

The literature on wind damage in New Zealand forests is reviewed to investigate how abiotic and biotic factors influence damage severity, damage type, and forest recovery. Winds that damage forests tend to result from extra-tropical depressions or from topographically enhanced westerly air flows. Severe wind damage can occur when wind speeds exceed c. 0 km/hr, although investigating the relationship between damage and wind speeds is difficult, as gusts, for which speed is usually unrecorded, are important. Damage is often quantified by estimates of area affected, with some authors detailing the size and species of damaged trees within a given area. Key abiotic factors that influence damage patterns are topographical position, edaphic conditions, and disturbance history. Important biotic factors are tree height, tree health, position of the tree within the stand, and species. Damage type (uprooting or breakage) is primarily controlled by canopy position and rooting depth. Forest responses to wind damage include sprouting, recruitment, release, and suppression, with the dominant mode of forest recovery being strongly influenced by the severity of damage, and the species composition of the stand. As noted in international literature on wind damage, a lack of consistent methods, combined with poor species and spatial coverage, makes identifying general trends difficult. Investigating the role of wind damage in New Zealand forests has focused to date on Nothofagus forests and plantations of exotic trees and few studies have investigated long term dynamics following wind disturbance events.