New Zealand Journal of Ecology (1997) 21(1): 63- 71

Burning in a New Zealand snow-tussock grassland: Effects on soil microbial biomass and nitrogen and phosphorus availability

Research Article
D. J. Ross 1
T. W. Speir 1,2
K. R. Tate 1
C. W. Feltham 1
  1. Landcare Research New Zealand, Private Bag 11052, Palmerston North, New Zealand
  2. Present address: Environmental and Scientific Research Limited, P.O. Box 30547, Lower Hutt, New Zealand

Fire has been an important management tool in the pastoral use of New Zealand tussock grasslands. The effects of a farm-scale pastoral fire and subsequent grazing by sheep on soil biochemical properties in tussock grasslands dominated by the narrow-leaved snow tussock (Chionochloa rigida ssp. rigida) were investigated, 1.5 and 2.5 years after the fire event, in 0-2 cm depth mineral soil at a site at 975 m altitude in Central Otago, New Zealand. The nitrogen (N) and phosphorus (P) concentrations of C. rigida leaves were also measured. Comparisons were made with soil and tussock leaves from an adjacent unburned site. At both samplings, values of total soil organic carbon (C), extractable C, microbial biomass C, and basal respiratory activity were, on average, 14%, 18%, 23%, and 40%, respectively, lower at the burned than at the unburned site. In contrast, microbial N values were roughly similar at both sites, while microbial P values were 42% higher at the burned site after 1.5 years. Phosphomonoesterase and phosphodiesterase activities were then also similar at both sites, whereas invertase activity was higher at the burned site. The greater availability of N and P at the burned site was confirmed by the higher concentrations of N and P in C. rigida leaves sampled 2 years after the fire. Ratios of microbial C:microbial N and microbial C:microbial P were significantly lower at both samplings at the burned site, and emphasise the importance of the soil microbial biomass in conserving N and P after pastoral burning in a grassland ecosystem.