forest biodiversity

Native and adventive detritivores (Diplopoda, Isopoda and Amphipoda) in a modified landscape: influence of forest type and edge

The distribution and prevalence in New Zealand of adventive detritivores in native forest remnants, and of native detritivores in pine plantations, are not well known. We investigated whether forest type (small urban native remnants, large remote native remnants, and pine) and plot location (edge plot vs centre plot) influenced the abundance and community composition of native and adventive detritivores (Diplopoda, Isopoda, and Amphipoda) in forests of a modified landscape in the lower North Island of New Zealand.

What’s the end-game for biodiversity: is it time for conservation evolution?

Conservation biology emerged in the 1980s to prevent extinctions by intervention and adaptive management. Despite many successes worldwide, the goal of self-sustaining populations of many threatened species without ongoing human assistance remains elusive. This is in part due to novel selection pressures overwhelming the ability of species to adapt to changing ecological circumstances. Evolution was also not considered to occur sufficiently fast to induce the recovery of many species. Recently, however, evolution has been observed in contemporary time frames, often in decades.