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Supplementary Material

Appendix S1. Mean estimates of σ (metres), with associated standard deviations and number of estimates for possums, ship rats, 
house mice, stoats, ferrets, feral cats, and hedgehogs, pooled over sex and season separately. Estimates from studies with less 
than four measurements taken over a single season were excluded from this table.
__________________________________________________________________________________________________________________________________________________________________

σSpecies		  Males	 Females	 Winter	 Spring	 Summer	 Autumn
__________________________________________________________________________________________________________________________________________________________________

σPossum	 mean	 65.9	 50.4	 35.6	 38.2	 39.1	 94.7
	 s.d.	 48.4	 36.1	 16.2	 20.0	 16.6	 45.4
	 n	 20	 20	 7	 9	 13	 7
σShipRat	 mean	 28.3	 14.6	 21.5	 24.0	 28.8	 26.8
	 s.d.	 19.6	 8.0	 7.4	 7.7	 16.2	 15.0
	 n	 8	 8	 30	 17	 18	 18
σHouseMouse	 mean	 16.0	 12.4	 16.8	 27.5	 19.1	 16.6
	 s.d.	 3.0	 3.2	 6.8	 18.2	 7.6	 7.2
	 n	 6	 6	 13	 29	 18	 47
σStoat	 mean	 261.0	 201.0	 202.0	 263.0	 204.0	 259.0
	 s.d.	 79.0	 50.2	 47.4	 126.0	 79.1	 48.1
	 n	 16	 14	 4	 5	 7	 4
σFerret	 mean	 227.0	 303.0	 -	 -	 -	 -
	 s.d.	 60.6	 123.0	 -	 -	 -	 -
	 n	 11	 11	 -	 -	 -	 -
σFeralCat	 mean	 529.0	 381.0	 -	 -	 -	 -
	 s.d.	 235.0	 188.0	 -	 -	 -	 -
	 n	 20	 21	 -	 -	 -	 -
σHedgehog	 mean	 86.3	 61.2	 -	 -	 -	 -
	 s.d.	 70.3	 42.7	 -	 -	 -	 -
	 n	 8	 7	 -	 -	 -	 -
__________________________________________________________________________________________________________________________________________________________________

Appendix S2. Estimates of σ (metres) versus season for (a) possums, (b) ship rats, (c) house mice, and (d) stoats labelled for sex 
and for studies carried out over a single season. Extreme outliers (values above Q3 + 3xIQR or below Q1 − 3xIQR, with Q1, Q3, 
and IQR being the first quartile, third quartile, and interquartile range respectively) were excluded from this plot.
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Appendix S3. Estimates of density versus season for (a) possums, (b) ship rats, and (c) house mice labelled for sex and for studies 
carried out over a single season. Extreme outliers (values above Q3 + 3xIQR or below Q1 − 3xIQR, with Q1, Q3, and IQR being 
the first quartile, third quartile, and interquartile range respectively) were excluded from this plot.

Appendix S4. Spatially-explicit capture-recapture (SECR) 
analysis of unpublished dataset (Byrom 2008). We analysed 
a dataset of ship rat capture-recapture using single-catch live 
traps at three sites located in the Orongorongo Valley (Wootton 
Stream, Orongorongo, and Peak Stream). Device spacing was 
76 m at Orongorongo and 18 m at the other two sites. Trapping 
was conducted in Spring, Summer, or Autumn between 
December 2006 and October 2008 The dominant habitat is 
beech forest at Peak Stream, podocarp-broadleaved forest at 
Wootton Stream, and mixed beech-podocarp-broadleaved 
forest (78% podocarp-broadleaved, and remainder beech 
forest) at Orongorongo. We used the secr package, fitting the 
spatial detection model using maximum likelihood, to estimate 
detection parameters and density from the capture-recapture 
data at each site. A negative exponential detection function, 
rather than half-normal, was the most parsimonious model for 
all three sites, based on AIC.

Study attributes and estimates of g0, σ and density for 
each site and season are detailed in Appendix S1. Note, the 
estimates of g0 and σ from this analysis can not be compared 
with g0 and σ estimates derived from SECR analyses that apply 
a half-normal detection function because these parameters 
have different definitions for different functional forms. 
Trap saturation at the Orongorongo site for all five trapping 
occasions was above 20%, therefore g0 estimates may be biased 

because maximum likelihood SECR modelling was used rather 
than inverse prediction and simulation (Efford et al. 2009). 
Over the two years of surveys (spring, summer, autumn) at 
Orongorongo, mean g0 estimates ranged from 0.20 to 0.40, σ 
from 13 to 23 m, and density from 4.1 to 10.5 ship rats ha−1. 
At Peak Stream (spring and autumn), detectability and density 
were generally lower, with mean g0 estimates ranging from 
0.09 to 0.18, σ from 12 to 25 m, and density from 2.3 to 5.7 
ship rats ha−1. At Wootton Stream (spring, summer, autumn) 
mean g0 estimates ranged from 0.05 to 0.25, σ from 11 to 18 
m, and density from 2 to 11 ship rats ha−1.

(a) Possums (b) Ship rats

(c) House mice

0

5

10

15

Autumn Winter Spring Summer NA
Season

D
en
si
ty

Sex
F

M

M&F

0

10

20

Autumn Winter Spring Summer
Season

D
en
si
ty

Sex
F

M

M&F

0

50

100

150

Autumn Winter Spring Summer
Season

D
en
si
ty

Sex
F

M

M&F



S3Vattiato et al.: Detectability of invasive mammal pests

Appendix S5. Analysis of detectability parameter estimation 
noise. The SECR estimation process can introduce a negative 
correlation between estimated values of σ and population 
density. This could affect the results of a regression analysis 
aiming to quantify the relationship between these parameters, 
such as the one we present in this paper. In this section, we test 
the null hypothesis that the true values of density and σ are 
uncorrelated, and that any relationship found between them 
is solely introduced by the estimation process.

To test this hypothesis, for each species, we generated 
100 000 datasets of log-transformed density and σ, with true 
values drawn from an uncorrelated bivariate normal distribution 
with the same mean and variance as the original dataset, and 
observed values, calculated as true values plus some random 
noise drawn from a correlated bivariate normal distribution. 
We fitted a linear model to each set of observed values as we 
described in the main text of this paper, and we compared the 
resulting distribution of R2 values to the value of R2 found 
in the original regression analyses presented in Table 2. Note 
that only datapoints where standard errors were reported for 
both density and σ were included in this analysis.

For each dataset, we first drew N true values of density 
and σ from independent normal distributions                       and   
                , with N being the number of datapoints used in 
the original analysis for that species,                      being the 
mean values of the density and σ mean estimates from our 
original dataset, and sD and sσ being the standard deviations 
of the “true” density and σ, before any noise is introduced by 
the estimation process. The values of sD and sσ are unknown, 
but we approximated them using the standard deviations of the 
original data together with available standard errors associated 
with the density and σ estimates, as described further below. 
Next, we generated N “observed” values of density and σ by 
adding some correlated bivariate estimation noise to the “true” 
values. The noise for datapoint i = 1, . . . , N was drawn from 
a bivariate normal distribution N (0, Ci), with Ci being the 
covariance matrix defined as

where ki,D and ki,σ are the standard deviation in the log-
transformed estimates for density and σ respectively for the 
ith datapoint, and ρ = −0.4 is the assumed SECR estimation 
correlation coefficient between density and σ (value chosen as 
a representative value in the range of correlation estimates in 
the secr package examples (Efford 2023); stronger correlation 
coefficients were also tested and gave similar results). In order 
to obtain values of kD and kσ from reported standard errors, 
we chose ki,D such that the interval [Die–ki,D, Dieki,D] had the 
same length as the interval [Di – SEi,D, Di + SEi,D], where  
SEi,D is the reported standard error in density for datapoint i 
s(and similarly for ki,σ).

To estimate the true standard deviations, sD and sσ, we 
chose values such that the expected overall standard deviation 
of the simulated observed data was the same as the standard 
deviation of the original data. This was achieved by setting

with           and           being the variances of the log-transformed 
reported estimates of density and σ in the original data, and 
ki,D and ki,σ being the variances of each log-transformed 
estimate i. To verify this process was performing as required, 
we checked that the means and standard deviations of the 
simulated datasets were distributed evenly about the means 
and standard deviations of the original data.

We then fitted a linear model to the simulated observed 
values and compared the corresponding distribution of values 
of  R2 to the value associated with the original dataset. Note 
that, the smaller the reported standard errors, the more of the 
variability in the data is coming from underlying variability in 
the true values and the less from the noise from the estimation 
process. Since the underlying variability in true values is 
assumed to be uncorrelated under the null hypothesis, this 
means that smaller error bars translate into weaker correlation 
in datasets simulated under the null, and therefore a greater 
likelihood (all else equal) that the original observed data will be 
significantly more correlated that the simulated observed data.

For all these species, the original dataset has a significantly 
larger value of R2 (p < 0.05) than the distribution of values 
of R2 under our model of the null hypothesis (Appendix S6). 
Therefore, the null hypothesis is rejected at the 5% level, for 
all three species, in favour of the alternative hypothesis that 
the true values of density and σ are, indeed, correlated. It is 
still possible that the observed relationships presented in Table 
2 represent a combination of the relationship between the true 
values, plus correlated noise from the estimation process.
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Appendix S6. Comparison of observed and simulated σ-density datasets and corresponding R2 distribution resulting from model 
fittings, used to reject the null hypothesis that the true values of σ and density are uncorrelated. Left column: reported data that 
had both a mean estimate and a standard error, plotted in log-space, with the symmetrical error bars used to generate the simulated 
datasets. Centre column: example simulated datasets with each true (black circles) / observed (red circles) pair. Right column: 
histograms of the R2 resulting from the 100 000 regression models compared to the original R2 value.
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