Locus	P/M	Source		
2F9	М	Lambert et al. 2005		
2H8	Μ	Lambert et al. 2005		
3A11	Μ	Lambert et al. 2005		
3B6	Р	Lambert et al. 2005		
4E8	М	Lambert et al. 2005		
4G9	М	Lambert et al. 2005		
4H2	М	Lambert et al. 2005		
6E4	Р	Lambert et al. 2005		
Ase18	Р	Richardson et al. 2000		
CK5A4B	Р	Tarr & Fleischer 1998		
Hru6	Р	Primmer et al. 1995		
IB4	М	Lambert et al. 2005		
ID6	М	Lambert et al. 2005		
Pcc02	М	T. King, pers. comm.		
Pcc04	М	T. King, pers. comm.		
POCC1	М	Bensch et al. 1997		
POCC6	М	Bensch et al. 1997		
POCC8	М	Bensch et al. 1997		

Supplementary Table S1. Polymorphic and monomorphic (P/M) microsatellite loci amplified in this study and their corresponding references.

Supplementary Table S3. Pairwise F_{ST} values for microsatellite (a), MHC (b) and TLR (c) loci. Populations SG, SK, SM2002, SM2004 and SM2012 are numbered 1–5, respectively.

a					
	1	2	3	4	5
1	0.000				
2	0.113	0.000			
3	0.056	0.192	0.000		
4	0.023	0.143	0.001	0.000	
5	0.064	0.166	0.001	0.005	0.000
b					
	1	2	3	4	5
1	0.000				
2	0.100	0.000			
3	-0.004	0.075	0.000		
4	0.057	-0.010	0.030	0.000	
5	0.067	-0.016	0.039	-0.015	0.000
с					
	1	2	3	4	5
1	0.000				
2	-0.003	0.000			
3	-0.003	-0.003	0.000		
4	-0.002	-0.002	-0.002	0.000	
5	-0.002	-0.002	-0.002	-0.001	0.000

Supplementary Table S2. Positively selected sites on MHC loci as identified by FEL and REL analyses.

Codon	$\begin{array}{c} \text{FEL} \\ d_N \! / \! d_S \end{array}$	FEL p-value	REL dN/d _S	REL Bayes Factor
5	1.770e14	0.009	6.422e14	60866.1
47	1.314e13	0.048	4.032e14	7081.93
64	8.744e12	0.054	6.774e14	3758.11

Supplementary Figure S1. Neighbour-Joining tree of 24 identified MHC class II alleles across five South Island saddleback populations. Putative non-classical MHC loci are shaded in yellow (Sutton et al. 2013). Diamond symbol next to allele names indicates those sequences contained stop codons.

Supplementary Figure S2a. Relationships between pairwise MHC/microsatellite (y = -83.906x - 0.122, R² = 0.322, p = 0.070) and TLR/microsatellite (y = 0.170 + 0.043, R² = 0.015, p=0.390) F_{ST} values. **S2b.** Relationship between TLR and MHC loci pairwise F_{ST} among five South Island saddleback populations (y = -0.005x - 0.002, R² = 0.296, p = 0.030).

ς	3	2	•
r,)	2	,

		10	20	30	40	50	60
,	MGSLTSI	YVFACVFLS	ILWNNIQPTVE	NKITANYSGE	ILLTEVPKNIE	PVHTHILDLSH	INSI
]	70	80 • • • • • • • • •	90 ••• •••• ••	100	110	120 •••
,	SEITNFE	RETSLSDLQV	LNLSHNLITEI	DFSAFMFNQI	DLEYLDLSHNN	VIWTAYCQLLA	RLR
		130	140	150	160	170	180
	HLDLSF	KFTVLPICQ	EFGIMFHLEYI	GLSAMMIRRS	DFRYVAHLQI	DTVFLTLEDE	SLY
	EPLSLT	190 	200 . FATNQNFNFSI	210 LYDGMSTSER	220 KLKIVNLRYTI	230 	240 •• ELQ
		250	260	270	280	290	M.L 300
	KKIKTTI	LTLDTVDLE A.M A Q	WTVILQIFLLV .AIM.J	WDSSVEHLTV	/RNLIFRGPVV	/ELTEYKHVPI AFL.H	 LRS
	LEQLLSI VI.	310 . GSSMKALTL DG	320 ERVRNKLYYFN .HV	330 IQEILYRQFSE .Q	340 	350 	360 KRS IRT.
	SFQYINE	370 . FSRNALTDEL .H	380 FQNCDTLANLF GVE	390 	400 	410 	420 ISSN .N.
	LLRNSR2	430 . AEGRCQWADS: DVE.	440 . LAELDLSSNQI .T	450 	460 	470 	480 TELH
	SLQELNI	490 . LASNRLADLP	500 . G CR AFTGLEII SGS.QF.	510 	520 	530 	540 •• ?FKC
	SCELQDI	550 . FLRLERQSGG	560 KLSGWPEAYVC FA	570 XYPEDLSGTÇ EG.RE	580 2LKDFHLTEL7	590	600 •• LLL
		610	620 . VPWYV R MLWQV	630 	640 	650 	660 DSL
•		L					

Supplementary Figure S3. PhcaTLR1LA1 (**SG19**) aligned against *Gallus gallus* toll-like receptor1 (**Ref**; GenBank Accession NP_001007489) sequence. Grey triangles represent the start (217) and stop (526) position of leucine-rich repeats. Black triangles represent start (527) and stop (550) positions of potential LRR C-terminal regions. Blue triangles represent start (593) and stop (613) positions of potential transmembrane domain. The black box indicates the position of the non-conservative amino acid substitution.

References

- Bensch S, Price T, Kohn J 1997. Isolation and characterization of microsatellite loci in a Phylloscopus warbler. Molecular Ecology 6: 91–92.
- Lambert DM, King T, Shepherd LD, Livingston A, Anderson S, Craig JL 2005. Serial population bottlenecks and genetic variation: translocated populations of the New Zealand saddleback (*Philesturnus carunculatus rufusater*). Conservation Genetics 6: 1–14.
- Primmer CR, Moller AP, Ellegren H 1995. Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow *Hirundo rustica*. Molecular Ecology 4: 493–498.
- Richardson DS, Jury FL, Dawson DA, Salgueiro P, Komdeur J, Burke T 2000. Fifty Seychelles warbler (*Acrocephalus sechellensis*) microsatellite loci polymorphic in Sylviidae species and their cross-species amplification in other passerine birds. Molecular Ecology 9: 2225–2230.
- Sutton JT, Robertson BC, Grueber CE, Stanton J-AL, Jamieson IG 2013. Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic diversity. Immunogenetics 65: 619–633.
- Tarr CL, Fleischer RC 1998. Primers for polymorphic GT microsatellites isolated from Mariana crow, *Corvus kubaryi*. Molecular Ecology 7: 253–255.