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Abstract: Kauri dieback disease, caused by the soil-borne oomycete pathogen Phytophthora agathidicida, has
spread through much of New Zealand’s kauri (Agathis australis) forest, killing thousands of trees. However,
whether kauri dieback affects the broader biological community in kauri forests is largely unknown. Here we
test whether dieback of kauri trees affected ecologically important beetle communities by sampling beetles
using flight-intercept and pitfall traps at three pairs of symptomatic (widespread dieback of kauri trees) and
asymptomatic (little or no dieback) forest sites in Waitakere Ranges Regional Park. We collected 4366 individual
beetles from 377 species and found that beetle abundance and species richness were significantly lower (34%
lower abundance and 19% lower species richness) in symptomatic sites than in asymptomatic sites, whereas
beetle diversity and community composition showed no significant differences. The lower abundance and
species richness observed in symptomatic sites were consistent across feeding guilds and not just those directly
associated with living or dead kauri trees, suggesting that the changes in beetle abundance and richness may
be related to environmental changes caused by the loss of dominant canopy trees rather than the loss of kauri
trees specifically. Our study presents early evidence that kauri dieback disease may have impacts that extend
beyond the host species. As the disease progresses at local and regional scales, long-term monitoring of a broad
range of taxa will be required to fully evaluate the impacts of kauri dieback on insect communities, as well as
any direct impacts on kauri-specialist species and ecosystem functioning.
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Introduction

Invasive pests and diseases can severely impact indigenous
forest tree species, leading to dieback and death (Lochle
et al. 2023). In extreme cases, previously dominant tree
species can be extirpated from landscapes (Yan et al. 2005;
Haack et al. 2010) or even driven to functional extinction
(Griffin 2000; Herms & McCullough 2014). The loss of so
many trees can have significant effects on other species in
those habitats, leading to changes in species richness and
abundance, community composition, and ecosystem services
and functioning (Hausman et al. 2010; Sire et al. 2022). In
New Zealand, the emergence and spread of plant pathogens
such as myrtle rust (Austropuccinia psidii) and kauri dieback
(Phytophthora agathidicida) threatens to reduce populations
of susceptible tree species and alter biological communities
(Bradshaw et al. 2020).

Kauri (Agathis australis) is a dominant emergent canopy
tree species that is endemic to northern New Zealand. Mature
trees can live for over 1500 years, reach 50 m in height, and
have a trunk diameter of up to 4.4 m (Steward & Beveridge
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2010), although an age of 600 years and a diameter of 1.5 m
is more typical of existing forest (Ahmed & Ogden 1987).
At the time of European settlement, kauri forest covered c. 1
million ha of land in the northern North Island, but extensive
logging and burning has reduced the amount of old growth
kauri forest to less than 1% (7500 ha) of its previous range
(Steward & Beveridge 2010). An additional 60 000 ha of
regenerating forest and scrubland contains some young kauri
trees (Ahmed & Ogden 1987; Steward & Beveridge 2010).
Kauri forest typically has a subcanopy of podocarp and
broadleaf species, such as rimu (Dacrydium cupressinum),
rewarewa (Knightia excelsa), tawa (Beilschmiedia tawa), and
tanekaha (Phyllocladus trichomanoides), as well as a diverse
understory of endemic trees, shrubs, and ferns (Ecroyd 1982;
Wyse et al. 2014). The crowns of kauri trees can support
diverse communities of epiphytic plants (Bellgard etal. 2016).
Although kauri forests supporta high biodiversity of indigenous
species (Ward et al. 2014), there are no studies we know of
that have specifically examined the fauna associated with
kauri trees. However, a few insects are known to specialise
on kauri trees for their development, such as the kauri leaf
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miner, Acrocercops leucocyma (Lepidoptera: Gracillariidae)
and possibly the small longhorn beetle Microlamia pygmaea
(Coleoptera: Cerambycidae) (Martin 2000). Kauri is also the
only known native host of the wood boring short-nosed kauri
weevil, Xenocnema spinipes (Coleoptera: Curculionidae),
although this species is now common on introduced conifers.

Phytophthora agathidicida is a soil-borne oomycete
pathogen that infects the roots of kauri trees, causing kauri
dieback disease which is characterised by root and collar rot
that prevents the uptake of water and nutrients (Beever et al.
2009). It was first found in the Waitakere Ranges west of Tamaki
Makaurau | Auckland in 2006 (Beever et al. 2009) and was
subsequently detected across much ofthe natural range of kauri
innorthern New Zealand (Waipara et al. 2013; Bradshaw et al.
2020). Infected trees suffer from resin bleeding, defoliation,
and eventual death (Beever et al. 2009; Waipara et al. 2013),
although these chronic symptoms are only observed late in
the disease progression (Bellgard et al. 2016; Bradshaw et al.
2020). Ittypically takes 1-10 years from symptom development
to mortality (Bradshaw et al. 2020), and trees can be infected
for several years before symptoms become obvious (Bellgard
et al. 2016). Trees of all ages and sizes are affected, although
decline is more rapid for smaller trees (Beever et al. 2009).
The main vector for P. agathidicida appears to be humans
inadvertently moving infected soil on their shoes or other
equipment, since most infections occur along walking tracks
(Hill & Waipara 2017), although feral pigs (Sus scrofa) may
also contribute to its spread (Bassett et al. 2017).

The impact of the loss of so many kauri trees on the
wider biological community is largely unknown. The death
of these trees will have positive to negative impacts on other
organisms, both directly (e.g. on species that rely on kauri
for food or habitat) and indirectly (e.g. through changes to
plant composition, canopy structure, nutrient cycling, abiotic
conditions, or species interactions) (Ellison et al. 2005; Thom
& Seidl 2016). Short- to medium-term changes may include
increased availability of dead wood for xylophagous species,
reduced competition for space in the canopy for light-dependent
trees, and increased light reaching the forest floor. Over the
long-term, the loss of tree species from forests in other parts
of the world has resulted in changes to insect community
composition and ecosystem functioning (Boyd et al. 2013),
including decomposition, nutrient cycling (Silvester 2000),
and carbon sequestration (Ellison et al. 2005). For example,
the widespread loss of ash (Fraxinus spp.) trees in North
America following the invasion of emerald ash borer (4grilus
planipennis, Buprestidae) has led to widespread changes to
understory abiotic conditions, plant community composition,
nutrient cycling, successional dynamics, and the availability
of woody debris, as well as directly impacting dozens of
host-specific insect species (Herms & McCullough 2014).
Therefore, the wider impact of kauri dieback disease on forest
biodiversity is an important question to address.

Beetles comprise 25% of all animal species on Earth
(Farrell 1998; Grove & Stork 2000) and display an almost
unparalleled taxonomic and functional diversity (Wardhaugh
et al. 2014). For this reason, beetles are frequently used as
indicator species for biodiversity assessments of New Zealand
invertebrate communities (Hutcheson & Kimberly 1999; Ward
& Lariviere 2004; Ewers et al. 2007; Pawson et al. 2011;
Ward et al. 2014; Wardhaugh & Pawson 2023). In this study,
we compared the abundance, species richness, diversity, and
composition of beetle communities sampled from paired sites
that were symptomatic and asymptomatic for kauri dieback
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disease, both overall and for different beetle feeding guilds.
Previous studies from other parts of the world have found
that large-scale disturbance events that affect natural habitats,
such as wide-scale dieback of dominant canopy trees from
disease, pest outbreaks, or extreme weather events, often result
in reductions to insect abundance or changes to community
composition before they impact species richness (Wagner
2020; Cai et al. 2021; Cours et al. 2021; Wagner et al. 2021;
Sire et al. 2022). We assume that the loss of many dominant
canopy trees in dieback-affected kauri forests has changed
abiotic and/or biotic conditions (e.g. open canopy, plant
community composition, etc.) at a local scale. We therefore
hypothesised that symptomatic sites would have reduced beetle
abundance and altered community composition compared to
asymptomatic sites, but no differences in species richness
and diversity. Furthermore, since beetles are a dominant
taxonomic group associated with dead wood (Miiller et al.
2010; Lassauce etal. 2011; Sandstrom et al. 2019; Thorn et al.
2020), we hypothesised that xylophagous species, particularly
those known to feed on dead kauri wood, such as Xenocnema
spinipes and Mitrastethus baridioides, would be more abundant
in symptomatic sites than in asymptomatic sites due to the
greater amount of available dead kauri wood.

Methods

Study site

The study was conducted in Waitakere Ranges Regional Park,
west of Tamaki Makaurau | Auckland (Fig. 1). The park covers
approximately 17000 haand experiences a subtropical climate
(c. 1600 mm annual rainfall, mean annual temperature c. 10
°C) (Chappell 2014). Much of the forest within the park was
logged in the past, although some of the more inaccessible
areas, such as around Cascades, retain significant areas of old
growth kauri forest.

Three pairs of sites (Cascades, Huia, and Piha; Fig. 1;
each 40 x 50 m or 2000 m?) that were symptomatic and
asymptomatic for kauri dieback disease (six sites total) were
established in kauri forest between 2011 and 2015 to study
the biological and ecological impacts of kauri dieback in
Waitakere Ranges Regional Park. Atthe time of establishment,
all three asymptomatic sites were free of kauri dieback disease.
However, P. agathidicida has now been detected at the
asymptomatic sites at Cascades and Huia. As the infections at
these sites are relatively recent, and it takes up to ten years from
infection to tree mortality, our study could be more accurately
described as acomparison between old symptomatic sites with
widespread dieback of kauri trees and newly symptomatic sites
with little or no tree mortality to date. For clarity, we refer to
all three of the original asymptomatic sites as asymptomatic
when making comparisons.

Beetle collection

We focussed on beetles due to their high taxonomic and
functional diversity, and because they may be indicator species
for changes in the abundance, richness, and composition of
broader invertebrate communities (Wardhaugh et al. 2014).
Beetles were sampled using flight-intercept traps (FITs) and
pitfall traps (Appendix S1 in Supplementary Material). Since
both trap types passively collect active insects, samples are
best considered a function of true abundance and activity rate.
Forclarity, we refer to this ‘activity-abundance’ as ‘abundance’
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Figure 1. Location of study sites in kauri (Agathis
australis) forest that were asymptomatic (green)
and symptomatic (red) for kauri dieback disease
(Phytophthora agathidicida)in Waitakere Ranges
Regional Park, New Zealand. Figure reproduced
with permission from Cordes (2023).

(] Waitakere Ranges Regional Park

throughout the manuscript. The FITs consisted of two black
malflute™ cross-baffles (600 x 210 mm) positioned over a
funnel and collection cup approximately half-filled with 100%
monopropylene glycol (TMK Packers Ltd., New Zealand),
which acted as a killing solution and preservative (Kerr et al.
2022). Each FIT was topped with a large square piece of stiff
plastic (400 x 400 mm) to minimise leaves and rain falling
into the collection cup. The FITs were attached to metal stakes
or small trees at breast height using plastic cable ties. Pitfall
traps were plastic cups (75 mm diameter, 100 mm depth)
dug into the ground so that the rim of the cup was at or just
below ground level, and approximately half-filled with 100%
monopropylene glycol. Roofs made from a square of black
malflute™ (250 x 250 mm) were suspended c. 50 mm above
the traps with two tent pegs to prevent leaves and rain from
filling the cups.

Five FITs and five pitfall traps were installed at each site
(60 traps total) from 25-27 October 2023 to 5-8 February
2024. Traps of the same type were placed ad hoc within each
site, positioned at least 10 m apart. Traps were cleared on four
occasions during the study, with sampling periods ranging
from 11 to 37 days. A total of 238 samples were collected
due to the loss of two samples in the field, one pitfall sample
and one from an FIT, both from the asymptomatic site at
Huia operating from 25 October to 10 November. All adult

beetles were sorted to species or morphospecies (hereafter
referred to as species). Representatives of each species were
pinned or pointed to build a reference collection, which is
stored at the National Forest Insect Collection (FRNZ) at the
Bioeconomy Science Institute, in Rotorua, New Zealand.
Specimens that were not dry mounted, as well as non-beetle
bycatch, were preserved in 70% ethanol. All beetle species
were allocated to a feeding guild based on their known biology
or their presumed biology inferred from closely related taxa.
These feeding guilds were fungivores (species that feed on
fungi), herbivores (species that feed on living plant tissue),
predators (species that feed on other invertebrates), scavengers
(species that feed on decomposing organic matter), xylophages
(species that feed on dead wood), and unknown. The unknown
category includes potential omnivorous species and species
for which we have no specific information and whose close
relatives vary in their feeding guilds, precluding any confident
inferences. For our study, these unknowns were all click beetles
(Elateridae), which include various predatory, herbivorous,
and omnivorous species.

Statistical analyses

Species accumulation curves (SAC) that compare species
richness with increasing sample size in symptomatic and
asymptomatic sites were built using the “random” method that



finds the mean SAC and its standard deviation from random
permutations of sample order (Gotelli & Colwell 2001).

To test whether beetle alpha diversity varied between
symptomatic and asymptomatic sites, we used a Linear Mixed
Model. Shannon alpha diversity was calculated per sample and
used as the response variable, with forest type (asymptomatic
forest or symptomatic forest) as the explanatory variable. Trap
identity and site were used as random factors to account for
non-independence of repeated measures from the same traps
and sites. Finally, to adjust for the slightly different numbers
of sampling days among traps, we included log-transformed
trap days per sample as an offset. For these analyses, each
trap was defined as a sampling unit (60 total traps) with four
repeated measures each, as every trap was cleared four times.

To compare beetle abundance and species richness between
symptomatic and asymptomatic sites, we used Generalised
Linear Mixed Models (GLMMs) with negative binomial
distributions (nbinom 1 function in R). After model reduction
(see below), abundance or species richness per sampling unit
were used as the response variable in their respective models,
with beetle feeding guild (predator, fungivore, herbivore,
scavenger, xylophage, or unknown) and forest type as the
explanatory variables. For these comparisons, a negative
binomial modelis a generalisation of the Poisson model, which
relaxes the restrictive assumption that the variance and mean
are equal. It differs from a Poisson model (Hilbe 2014) in that
it allows a variance higher than the mean (overdispersion)
(Yirga et al. 2020). As part of model selection, the full models
(considering the interaction) were further reduced with the
stepwise method by excluding nonsignificant interactions
(Crawley 2010). We again included trap identity and site as
random factors and log-transformed trap days per sample as
an offset. Post-hoc pairwise comparisons between groups were
conducted using estimated marginal means derived from the
reduced model. Pairwise contrasts were adjusted for multiple
testing using the Sidak correction to control the family-wise
error rate (Lenth 2023). Estimated marginal means (or least-
squared means) are defined as marginal means of model
predictions over a grid comprising all factor combinations,
including random factors (Lenth 2023).

To compare the community composition of beetles between
symptomatic and asymptomatic sites and between trap types,
we used Permutational Multivariate Analysis of Variance
(PERMANOVA) and non-metric multidimensional scaling
(NMDS) to visualise the data. First, we calculated Bray—Curtis
distances between individual samples based on a matrix
containing abundance values, with beetle species as columns
and samples as rows, using the avgdist function. Second, a
PERMANOVA test (adonis2 function) was performed using
the Bray-Curtis distance matrix as the response variable, and
forest type and trap type as explanatory variables. The groups
of data (symptomatic vs. asymptomatic forest and FITs vs.
pitfall traps) were also tested forhomogeneity of variation with
permutation tests using the betadisper and permutest functions,
as this is an assumption for PERMANOVA (Anderson 2017).
For visualisation, NMDS scores (metaMDS function) were
obtained using the Bray—Curtis distance matrix. For a good
representation of the data, the stress value of the NMDS should
ideally be between 0.1 and 0.2 (Micallef & Schembri 1998).
When stress is close to 0 it may indicate the presence of at
least one outlier sample. The stress score for our full data set
(238 samples) was 0.0004. Consequently, six samples were
omitted from the analysis and the resulting NMDS stress of
0.122 indicated sufficient fit.
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All analyses were performed in R version 4.2.2 (R Core
Team 2022). For the GLMMs, different packages were used:
“Ime4” (Bates et al. 2015) for running the models, “car” (Fox
& Weisberg 2019) to obtain type-III analysis-of-variance
tables for the model, and “emmeans” (Lenth 2023) for contrast
tests. Shannon alpha diversity indices, species accumulation
curves, NMDS, and PERMANOVA were all conducted using
the “vegan” package (Oksanen et al. 2022).

Results

We collected a total of 4366 beetles from 377 species and 46
families. Of these, 347 taxa (92%) could be identified to at
least the level of genus, while two species (Leiodinae n. gen.
sp. 1, Leiodidae; Epiphaninin. gen. sp. 1, Eucnemidae) belong
toundescribed genera. Sampling effort (trap days) varied little
between site pairs (0-2.5% of total trap days) as we lost only
two samples, both from the asymptomatic site at Huia. The
number of beetles collected per sample varied greatly, ranging
from 1 to 91 individuals.

Beetle abundance was 34% higher in asymptomatic
(22.2 + 1.4 individuals per sample, estimated marginal mean
+ 1 SEM) than symptomatic sites (14.6 £ 1.2) ()(2(]’ 1418) =
8.68, P = 0.003) (Appendix S2). The lack of a significant
interaction between forest types and beetle feeding guilds in
the model indicated that the difference in beetle abundance
did not depend on feeding guild. Beetle abundance differed
among feeding guilds ()(2(5’ 1418) = 332.26, P < 0.0001), and
these results are presented in the Supplementary Materials
(Appendices S2 & S3).

A total of 284 and 257 species were collected from
asymptomatic and symptomatic sites, respectively (Table 1,
Fig. 2). On average, beetle species richness was 19% higher in
asymptomatic (9.8 +0.5 species per sample) than symptomatic
sites (7.9 £0.4) ()(2(1’ 1418y = 3.13, P <0.023) (Appendix S4).
There was again a lack of a significant interaction between
forest types and beetle feeding guilds, indicating that the
difference in beetle species richness did not depend on feeding
guild. Similarly to abundance, species richness differed among
feeding guilds ()(2(5, 1418)=3519.96, P<0.0001), and these results
are presented in the Supplementary Materials (Appendix S4).
Shannon alpha diversity per trap ranged from 0.8 to 2.5, with
a mean of 1.8 + 0.1, but did not differ between symptomatic
and asymptomatic sites ()(2(1’ 233 = 1.47, P=0.225) (Table 1).

Although the PERMANOVA indicated that beetle
community composition differed between asymptomatic
and symptomatic sites (/7 29) = 1.75, P = 0.002), sample
variance (i.e. beta diversity) also differed between sites (F;,
230)= 6.13, P=0.016), meaning that the PERMANOVA results
have to be taken with caution (Anderson 2001). In addition,
visualisation of the NMDS showed substantial overlap between
asymptomatic and symptomatic sites (Fig. 3). Lastly, the
different trap types collected complementary faunas (F'(;, 229
=16.04, P=0.001; Appendix S6).

Discussion

Beetle abundance and species richness were 34% and 19%
higher, respectively, inasymptomatic than in symptomatic kauri
forest sites (Table 1), suggesting that beetle populations may
decline in forest areas suffering from kauri dieback. However,
beetle alphadiversity and community composition did not differ
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Table 1: The mean (£ 1 SEM) alpha diversity, abundance, and species richness of beetles collected at three kauri (Agathis
australis) forest sites that were asymptomatic and symptomatic for kauri dieback disease (Phytophthora agathidicida) in
Waitakere Ranges Regional Park, New Zealand. Beetles were collected using pitfall traps and flight-intercept traps. Variables
that significantly differed between asymptomatic and symptomatic sites are given in bold.

Mean + SEM per sample Total
Variable Asymptomatic Symptomatic Asymptomatic Symptomatic

Shannon diversity 1.81 (+ 0.057) 1.70 (= 0.059) NA NA

Abundance 22.2 (£ 1.44) 14.6 (£ 1.17) 2619 1747

Species richness 9.81 (x 0.515) 7.92 (= 0.446) 284 257
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||||I|||I||||| Figure 2. Species accumulation curves of beetles from
200 |||||||||| samples collected using pitfall traps and flight-intercept
" |I||||||| traps from kauri (Agathis australis) forest sites that
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£ ll“ll Waitakere Ranges Regional Park, New Zealand. Curves
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Figure 3. Ordination plot using non-metric multidimensional scaling (NMDS, stress = 0.122) and showing the similarity of beetle communities
between kauri (Agathis australis) forest sites that were asymptomatic (red) and symptomatic (blue) for kauri dieback disease (Phytophthora
agathidicida) in Waitakere Ranges Regional Park, New Zealand. Beetles were collected using pitfall traps and flight-intercept traps. Each small
point represents a sampling event, and sampling events with similar beetle community composition are closer in the ordination space.
The two larger points represent the centroids for beetle communities sampled from asymptomatic and symptomatic kauri forest and
ellipses represent 95% confidence intervals around each centroid. Six samples were omitted from the analysis as these were outliers that
decreased stress to 0.0004. For a good representation of the data, the stress value should ideally be between 0.1 and 0.2. Permutational
Analysis of Variance (PERMANOVA) indicated that beetle community composition differed between asymptomatic and symptomatic
kauri forest (F{; 229y = 1.75, P = 0.002), but this was not visually supported by the ordination plot.



between symptomatic and asymptomatic sites. These results
were consistent with our hypothesis that beetle abundance
would decline and diversity would remain unchanged in sites
with kauri dieback. However, the decline in species richness
and lack of any difference in community composition were
not consistent with our hypothesis.

We found no evidence to support our second hypothesis,
that xylophagous species known to feed on dead kauri wood,
such as Mitrastethus baridioides (long-nosed kauri weevil)
and Xenocnema spinipes (short-nosed kauri weevil), would be
more abundant in symptomatic than asymptomatic sites due
to the greater amount of available dead kauri wood. Although
46 of the 47 X. spinipes individuals collected were from
symptomatic sites, 45 were from the Huia site, and 41 from a
single trap. This pattern suggests that dead wood near this trap
was infested with X. spinipes and is not necessarily indicative
of a general population increase due to kauri dieback. No M.
baridioides were collected. The lack of any clear increase in
the abundance of these xylophagous species could be due to
the state or stage of decay of dead kauri trees within these
sites. For example, M. baridioides only reproduces in damp
or wet wood (Hosking 1978). It is possible that dead wood in
the symptomatic sites dries quickly due to increased exposure
to sunlight and wind, preventing successful reproduction of
M. baridioides. Although less is known about the reproductive
requirements of X. spinipes, ithas been shown that they strongly
prefer attacking the wood of trees that have been dead for less
than one year (A. Sky 2011, University of Canterbury, unpubl.
data). Most of the available dead wood at symptomatic sites
was from trees that have been dead for several years and may
therefore be too decomposed to support this species.

Although our results suggest that beetle abundance and
speciesrichness were lower in kauri forests suffering from kauri
dieback disease, there is little indication from our data that
dieback affected beetle diversity or community composition.
Similar results, where one measure of an insect community
was impacted by disturbance but not another, have been found
in other parts of the world. For example, insect community
composition but not species richness was affected by canopy
dieback caused by herbivorous insects or drought in European
forests (Cai et al. 2021; Cours et al. 2021; Sire et al. 2022).
Why one community measure may change for a particular
group of insects at a particular site and not another, is not easily
explained and may be due to local scale factors, such as rates
of dead wood deposition, changes to plant communities, and
successional processes (Cours et al. 2021; Sire et al. 2022).
In some cases, species that are better adapted to the altered
habitat replace those most sensitive to the changes (Sire et al.
2022). This can result in significant changes to community
composition without affecting species richness. The decline
in species richness we observed suggests that rare species
were being lost from areas affected by kauri dieback, while
the more common species that compose the core of the beetle
community remain, though often at lower abundances. This
would be consistent with our result that community composition
remained unchanged between symptomatic and asymptomatic
sites, since the majority of species were still present.

There are several possible explanations for why kauri
dieback could resultinreduced abundance and species richness
of beetles but have little to no impact on their diversity or
community composition. First, the consistent effect across
multiple feeding guilds suggests that abundances and species
richness are being affected by changes to abiotic conditions,
such as temperature and humidity, rather than the loss of a
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single tree species (Sire et al. 2022). For example, increased
temperature and reduced humidity could negatively impact
forest-adapted beetle species by increasing their rates of water
loss. Alternatively, changes in abiotic conditions associated
with kauri dieback may affect the resources on which some
of these beetles rely. For example, canopy dieback following
attack by the bark beetle Ips typographus (Curculionidae:
Scolytinae) was found to greatly reduce fungal biomass and
alter fungal community composition in the litter and soil of a
spruce (Picea abies) forest in Central Europe (Stursova et al.
2014). A reduction in resources, such as foliage, fungi, or
insect prey, could decrease the abundance of associated beetles.
However, changes in community composition and diversity
may not occur until resources are more depleted or lost over
large spatial scales. Therefore, the lack of an effect on diversity
or community composition may be because kauri dieback is
not yet severe or widespread enough to result in larger-scale
changes to beetle communities. A further consideration is that
there may be a time lag between the loss of kauri trees and
the full impacts on the local beetle fauna, which may not be
realised for many years.

Thelack of differences in community composition between
symptomatic and asymptomatic sites may be at least partly
explained by the evolutionary history and unique composition
of the New Zealand flora and fauna. The New Zealand beetle
fauna is largely a fauna of the forest (Klimaszewski & Watt
1997), and most species are therefore expected to be adapted
to the cool, damp, and shady abiotic conditions prevalent in
closed canopy, old growth forest. The loss of canopy trees
allows more light and wind to penetrate to the forest floor,
leading to warmer, drier, and lighter conditions (Kopacek et al.
2020) that are assumed to be suboptimal for most New Zealand
beetle species. However, the paucity of endemic beetle species
adapted to more open environments (Klimaszewski & Watt
1997), particularly in lowland areas of the North Island, may
help to explain why community composition did not change
after dieback. Studies from Europe often find changes to insect
community composition because open habitat species move
into forest areas after a disturbance (Cai et al. 2021; Cours
et al. 2021; Sire et al. 2022). In our study, it seems that the
existing forest community simply decreased in abundance
and species richness with the loss of canopy trees, rather
than being replaced by species better adapted to the disturbed
environment. We cannot, however, discount the limitations of
our study, where we had relatively few sites and our sampling
was restricted to a single summer. Sampling a wider range of
sites and over a longer period will help to more fully resolve
the impacts of kauri dieback on beetle communities.

Although we found no evidence for kauri dieback
impacting beetle diversity or community composition, the
loss of kauri trees was associated with lower beetle abundance
and species richness. This result was observed across feeding
guilds, suggesting that the decreased beetle abundance and
species richness may be related to altered environmental
conditions from the loss of canopy trees (e.g. increased light
and wind, and reduced humidity), rather than to the loss of
kauri trees specifically. Reduced abundance of insects is a
common early impact from large-scale disturbance events,
such as forest dieback from disease or pest outbreaks (Wagner
2020; Wagneretal. 2021). It should be noted that kauri dieback
has thus far affected a relatively small area of kauri forest in
the Waitakere Ranges, and for a relatively short amount of
time. As the disease progresses at local and regional scales,
long-term monitoring will be needed across more affected
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areas, and will need to incorporate more taxa and measures
of ecosystem functioning to fully understand the community
and ecosystem-wide impacts of kauri dieback disease.
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