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Abstract: Introduced house mice are widespread in Aotearoa/New Zealand, and they have significant impacts 
on native wildlife. The most common toxins for controlling rodents are anticoagulant rodenticides (AR). 
Even though AR are an efficient tool, resistance to these substances in rodent populations has been detected in 
many countries. This phenomenon represents a major factor in reducing the success of pest management, and 
it is mostly related to missense mutations in the VKORC1 gene. Despite the crucial importance of effective 
house mouse management, genetic AR resistance in mice in Aotearoa/New Zealand is poorly understood. In 
this study, we undertook a genetic survey of six sites across the Auckland region to investigate the presence 
of VKORC1 mutations potentially involved in AR resistance. We found a total of five different missense 
mutations across four of the six sites. Three mutations leading to amino acid changes have been recorded in 
rodents previously while two are novel. Among these, the well-known Tyr139Cys, involved in resistance to 
some powerful AR like bromadiolone, is found with a high allelic frequency in central Auckland. Our results 
suggest that even across a moderate geographic region, there can be important genetic diversity and clustering 
in AR resistance. Anticoagulant rodenticides are a critical tool in introduced rodent management, but their use 
must be deliberated and genetic screening of rodent populations should increasingly be an important part of 
AR management operations.
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Introduction

The most common method for controlling rodents is the use of 
anticoagulant rodenticides (AR) (McGee et al. 2020). These 
substances operate by inhibiting the vitamin K 2,3-epoxide 
reductase (VKORC) complex, a protein involved in the vitamin 
K synthesis cycle, which is crucial for blood clotting. Despite 
the efficiency of AR, the response to these substances in pest 
control may be influenced by a combination of either genetic 
and toxicokinetic factors (McGee et  al. 2020). In fact, the 
extensive use of AR can lead to the development of resistance 
in rodent populations (Buckle, 2013; Goulois et  al. 2017). 
The emergence of resistance to AR (comprising elevated 
tolerance or even immunity) is a major factor in unsuccessful 
pest management and was first observed in Wales (UK) in the 
late 1950s. Since then, numerous cases have been identified 
in various countries and across different rodent species 
(Iacucci et al. 2018; McGee et al. 2020; Díaz & Kohn 2021; 
Rached et al. 2022; Chua et al. 2022; Sran et al. 2022; Yiğit 
et al. 2023; Krijger et al. 2023; Carromeu-Santos et al. 2023; 
Aivelo et al. 2023).

Resistance is mainly due to the presence of Single 
Nucleotide Polymorphisms (SNPs) in one or more of the three 

exons of the VKORC1 gene. This gene encodes the subunit 
1 of the VKORC protein, and missense SNPs result in amino 
acid substitutions that alter the conformation of VKORC. This 
frequently leads to a reduced basal activity of the protein, 
potentially resulting in a decreased VKORC-AR affinity and 
thus conferring resistance to all first-generation AR (1AR) 
and some second-generation AR (2AR) (Pelz et  al. 2005). 
The advent of AR resistance diminishes the effectiveness 
of invasive rodent management, primarily because resistant 
populations can survive exposure to AR, and secondly, because 
the excessive and ineffective use of toxic baits poses a risk of 
bioaccumulation and poisoning of non-target species (Pelz & 
Prescott 2015). Genotyping the VKORC1 gene allows for the 
detection of known resistance-conferring mutations, thereby 
improving rodent management strategies. However, while 
every missense SNP causes amino acid substitutions, this does 
not necessarily mean they always confer resistance. Indeed, the 
actual effects of newly identified SNPs can only be determined 
through in vivo tests or biokinetic simulations (Bailey & Eason 
2000). Without these analyses, their role in resistance can only 
be hypothesized based on previous studies. Nonetheless, the 
identification of any missense SNP still provides valuable 
information to be considered in planning rodent management.
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Introduced house mice (Mus musculus) are one of the 
most globally widespread invasive species (Lowe et al. 2000; 
Russell in press). They are a major agricultural pest (Brown 
et al. 2022) and disease host (Moinet et al. 2024). On islands 
they are a major reptile and invertebrate predator (St Clair 2011; 
Monks et al. 2024) but are often not the primary target of pest 
management where invasive rats are also present (Samaniego 
et al. 2024). Selective control of introduced rats can lead to 
increases in mouse abundance through competitor-release 
effect (Caut et al. 2007, Goldwater et al. 2012; Wilson et al. 
2018). In fact, mice are also more resistant to AR (Fisher 2005), 
which amplifies the competitor-release effect from selective 
control targeting rats. These effects can be so strong that mice 
are often survivors of rodent eradication efforts (MacKay et al. 
2007; Elliott et al. 2015).

In Aotearoa/New Zealand, introduced mice are widespread 
(Murphy & Nathan 2021) with different genetic identities 
due to multiple introductions from different sources (King 
et al. 2016; Veale et al. 2018) that may impact the efficiency 
of their management (MacKay et al. 2013). Mice have been 
successfully eradicated from a number of small offshore 
islands (Broome et al. 2019) but on the larger main islands 
their management tends to be neglected due to the absence of 
cost-efficient landscape tools (Samaniego et al. 2024). At some 
multi-predator eco-sanctuary management sites, mice are the 
sole remaining introduced mammal species when others have 
been removed (Innes et al. 2024).

To date, the only available genetic survey of AR resistance 
in Aotearoa/New  Zealand focused on three rat species, in 
which a few mutations with very low frequencies emerged 
(Cowan et al. 2017). The presence, identity and prevalence 
of VKORC1 mutations in mice in Aotearoa/New  Zealand 
remains poorly understood, though resistance has previously 
been detected in this species in the South Pacific (Wheeler 
et al. 2019). Given the widespread targeting of rats, but less 

so mice, in pest management (Russell et al. 2015), and the 
unregulated use of AR on private land (Cowan et al. 2017), 
it is likely that AR resistance is present and selected for in 
introduced house mice across Aotearoa/New  Zealand. We 
undertook a genetic survey of six sites across the Auckland 
region, with different histories of rodent management and AR 
use, to investigate the presence of the VKORC1 mutations 
that code for AR resistance.

Methods
Samples were collected from 2022 to 2023 in five different 
locations in the Auckland Region, while samples from 2011 
were available from a previous study at a sixth site where mice 
no longer exist (Table 1). Our sites comprised three offshore 
islands (Waiheke, Moturemu and Rotoroa), two regional 
parks (Shakespear and Tāwharanui) and one zoological park 
(Auckland Zoo). In the study area mice belong to M. musculus 
domesticus according to autosomal and mitochondrial genome, 
with small traces (approx. 2–3%) of M. m. castaneus nuclear 
ancestry (Veale et al. 2018) and varied origins reflected in 
mitochondrial D-loop haplotypes (MacKay et al. 2013). All 
our sites had a history of AR use which could pre-dispose 
them to selection AR resistance.

All the samples were stored in 96% pure ethanol until 
use. Genomic DNA was extracted using Quick-DNATM 
Miniprep Plus Kit by Zymo Research following the provider’s 
instructions. For each sample, three fragments (253 bp, 801 
bp and 308 bp long) of the VKORC1 gene were amplified. 
The primers used for PCRs are shown in Table 2. Each of the 
fragments contained one of the three exons of the VKORC1 
gene, allowing the sequencing of the entire encoding region 
(486 bp long). Exons 1, 2 and 3 are 174 bp, 110 bp and 202 
bp long respectively and they encode in total 161 amino acids.

Table 1. Sample size (n), geographic coordinates, year of collection and pest management history for each location.
__________________________________________________________________________________________________________________________________________________________________

Location	 Coordinates	 n	 Year	 History
__________________________________________________________________________________________________________________________________________________________________

Rotoroa Island	 36.813 S, 175.197 E	 12	 2011	 Norway rats eradicated with 2AR in 2010, mice 		
				    survived and eradicated in 2013.
Waiheke Island	 36.802 S, 175.028 E	 14	 2022	 Rats and mice managed with AR.
Moturemu Island	 36.422 S, 174.393 E	 15	 2022	 Norway rats and mice eradicated with 2AR in 1992. 		
				    Mice reinvaded between 2014-2019.
Shakespear Regional Park	 36.607 S, 174.824 E	 10	 2023	 Ship and Norway rats eradicated with 2AR in 2011, 		
				    mice persisted.
Tāwharanui Regional Park	 36.372 S, 174.831 E	 15	 2023	 Ship and Norway rats eradicated with 2AR in 2004, 		
				    mice persisted.
Auckland Zoo	 36.864 S, 174.720 E	 15	 2023	 Rats and mice historically managed with AR until 2018.
__________________________________________________________________________________________________________________________________________________________________

Table 2. Primers used in this study for VKORC1 amplification.
__________________________________________________________________________________________________________________________________________________________________

VKORC1	 Forward	 Reverse	 Annealing	 Reference 
			   Temperature	
__________________________________________________________________________________________________________________________________________________________________

Exon 1	 TCTTCCCTCCTGTSYCTGGG	 AAATYATCTGGYAACCTGGC	 56°C	 Iannucci et al. 2019
Exon 2	 CTGTGCTGAGGGGACAAAGT	 TTGCCATAAAACTGAGATTGTGA	 49°C	 Iannucci et al. 2019
Exon 3	 TTTCACCAGAAGCACCTGCTGYC	 ACACTTGGGCAAGGSTCATGTG	 61°C	 Grandemange et al. 	
				    2010
__________________________________________________________________________________________________________________________________________________________________
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Sequence chromatograms were manually examined and 
analysed using FinchTV (version 1.4.0; Geospiza Inc., 2006) 
to confirm the presence of mutations in both homozygous and 
heterozygous states. The FASTA files for each sequence were 
exported, and exons 1, 2, and 3 were combined to create a 
single sequence encompassing the entire VKORC1 coding 
region. A complete VKORC1 sequence, including all three 
exons, was downloaded from GenBank (accession number: 
NM_178600.2) and used as the wild type (WT) reference. An 
alignment was then built in MEGA (version 11.0.13; Tamura 
et al. 2021) comparing all sequences to the WT. Finally, we 
translated the DNA sequences into amino acid sequences 
to identify missense SNPs. For every location, the allelic 
frequency of the identified mutations was calculated.

Results

A total of 228 PCR products were successfully sequenced from 
81 mouse samples. Specifically, we obtained 75 sequences for 
exon 1, 73 for exon 2 and 80 for exon 3. Overall, 28.4% (n = 
23) of the mice included in this study had at least one VKORC1 
mutation and 23.5% (n = 19) of the total had at least one missense 
mutation. Tāwharanui Regional Park is the only location where 
no SNPs were found, while the other five sampled areas had at 
least one mutant mouse. Particularly, nine different SNPs were 
identified: four synonyms (Leu17Leu, Ala18Ala, Leu22Leu, 
and Glu37Glu) and four missense SNPs are found in exon 1 
(Ala14Thr, Leu20Ile, Ala21Thr, and Ala26Ser), no SNPs in 
exon 2 and one missense SNP is found in exon 3 (Tyr139Cys). 
Therefore, most of the mutations we detected are located in 
exon 1. The synonym mutations Leu17Leu and Leu22Leu only 
occur in one heterozygous individual each from Rotoroa and 
Moturemu Islands respectively, while Ala18Ala only occurs in 
two heterozygous individuals from Rotoroa Island. Conversely, 
the synonym mutation Glu37Glu follows a different pattern: 
it is always associated with Ala21Thr, and they are found in 

Figure 1. Allelic frequencies and distribution of the missense SNPs in the study area.

two homozygous individuals from the Auckland Zoo. The 
missense mutation Ala14Thr is found in three heterozygous 
individuals from Moturemu Island, and it is the only missense 
SNP found here. Similarly, Leu20Ile and Ala26Ser are also 
found in one heterozygous individual each and they represent 
the only missense SNPs from Waiheke Island and Shakespear 
Regional Park respectively. The missense mutation Tyr139Cys 
is the only SNP found in exon 3 and it was only detected in the 
Auckland Zoo. This mutation is found here with a very high 
allelic frequency (60%) and it is found in twelve individuals, 
half of which are homozygous. Detailed information about 
the allelic frequencies of every mutation in each location is 
provided in Figure 1 and Table 3.

Discussion

Our study identified a surprisingly high diversity of VKORC1 
missense mutations associated with and potentially contributing 
to AR resistance across a moderately sized metropolitan 
region. Moreover, a high site-specificity in both the identity 
and frequency of these SNPs also emerged. According to the 
available literature, the two missense mutations Ala14Thr and 
Leu20Ile are novel, having not been recorded previously in any 
rodent species. Therefore, it is difficult to assess their role in 
resistance to AR. However, the site Ala14 has been observed to 
have an accelerated selection in the desert rodent Nannospalax 
galili (Chen et  al. 2022). As a matter of fact, it is known 
that some rodent species living in arid areas show elevated 
physiological tolerance to AR, which seems to be due to some 
unknown selective pressures that rodents may experience in 
desert habitats. So, the mutation Ala14Thr may lead to some 
form of resistance. To our current state of knowledge, this 
hypothesis remains totally speculative and needs to be validated 
by biokinetic tests. All the other missense SNPs found in this 
study have already been detected in previous studies. The 
mutation Ala21Thr has been described in mice from Serbia and 
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Table 3. List of the SNPs found in this study. Missense SNPs are reported in bold. Some SNPs co-occurred in the same individual. n: number of samples, WT: number of wild type  
individuals, HET: number of heterozygous individuals, HOM: number of homozygous individuals.
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Sites	
n

	
WT

	 Ala14Thr	 Leu17Leu	 Ala18Ala	 Leu20Ile	 Ala21Thr	 Leu22Leu	 Ala26Ser	 Glu37Glu	 Tyr139Cys

			   HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM
Rotoroa Is.	 12	 9	 -	 -	 1	 -	 2	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

Waiheke Is.	 14	 13	 -	 -	 -	 -	 -	 -	 1	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

Moturemu Is.	 15	 11	 3	 -	 -	 -	 -	 -	 -	 -	 -	 -	 1	 -	 -	 -	 -	 -	 -	 -

Shakespear	 10	 9	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 1	 -	 -	 -	 -	 -

Tāwharanui	 15	 15	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

Auckland Zoo	 15	 1	 -	 -	 -	 -	 -	 -	 -	 -	 -	 2	 -	 -	 -	 -	 -	 2	 6	 6

TOTAL	 81	 58	 3	 -	 1	 -	 2	 -	 1	 -	 -	 2	 1	 -	 1	 -	 -	 2	 6	 6
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Type of  resistance	 Unknown	 -	 -	 Unknown	 Bromadiolone	 -	 No resistance	 -	 Warfarin, 											         
									         Coumatetralyl, 
									         Chlorophacinone,  
									         Bromadiolone
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

References	 This study	 This study	 Gallozzi	 This study	 Šćepović	 This study	 Goulois	 Díaz and Kohn	 Pelz 
			   et al. 2024		   et al. 2016; 		  et al. 2017	 2021; 	 et al. 2005;  
					     Díaz and Kohn			   Carromeu-Santos	 Rost 
					     2021			    et al. 2023	 et al. 2009;  
									         Šćepović  
									         et al. 2016;  
									         Goulois  
									         et al. 2017;  
									         Mooney  
									         et al. 2018;  
									         Blažić  
									         et al. 2023
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
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Table 3. List of the SNPs found in this study. Missense SNPs are reported in bold. Some SNPs co-occurred in the same individual. n: number of samples, WT: number of wild type  
individuals, HET: number of heterozygous individuals, HOM: number of homozygous individuals.
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Sites	
n

	
WT

	 Ala14Thr	 Leu17Leu	 Ala18Ala	 Leu20Ile	 Ala21Thr	 Leu22Leu	 Ala26Ser	 Glu37Glu	 Tyr139Cys

			   HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM	 HET	 HOM
Rotoroa Is.	 12	 9	 -	 -	 1	 -	 2	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

Waiheke Is.	 14	 13	 -	 -	 -	 -	 -	 -	 1	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

Moturemu Is.	 15	 11	 3	 -	 -	 -	 -	 -	 -	 -	 -	 -	 1	 -	 -	 -	 -	 -	 -	 -

Shakespear	 10	 9	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 1	 -	 -	 -	 -	 -

Tāwharanui	 15	 15	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -	 -

Auckland Zoo	 15	 1	 -	 -	 -	 -	 -	 -	 -	 -	 -	 2	 -	 -	 -	 -	 -	 2	 6	 6

TOTAL	 81	 58	 3	 -	 1	 -	 2	 -	 1	 -	 -	 2	 1	 -	 1	 -	 -	 2	 6	 6
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Type of  resistance	 Unknown	 -	 -	 Unknown	 Bromadiolone	 -	 No resistance	 -	 Warfarin, 											         
									         Coumatetralyl, 
									         Chlorophacinone,  
									         Bromadiolone
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

References	 This study	 This study	 Gallozzi	 This study	 Šćepović	 This study	 Goulois	 Díaz and Kohn	 Pelz 
			   et al. 2024		   et al. 2016; 		  et al. 2017	 2021; 	 et al. 2005;  
					     Díaz and Kohn			   Carromeu-Santos	 Rost 
					     2021			    et al. 2023	 et al. 2009;  
									         Šćepović  
									         et al. 2016;  
									         Goulois  
									         et al. 2017;  
									         Mooney  
									         et al. 2018;  
									         Blažić  
									         et al. 2023
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

it is known to give a high level of tolerance to bromadiolone 
(Šćepović et al. 2016). Interestingly, we found this mutation 
always associated with the silent mutation Glu37Glu. This 
condition was observed also in the USA by Díaz and Kohn 
(2021) and corresponds more closely to the sequence of M. m. 
castaneus than M. m. domesticus. In particular, Ala21Thr and 
Glu37Glu correspond the nucleotide positions 61 and 111 of 
the VKORC1 gene, which appear to be diagnostic. This is in 
accordance with the low but detectable nuclear ancestry for 
M. m. castaneus observed in Veale et al. (2018) in the North 
Island. So, the fact that the presence of these mutations can be 
the result of a previous castaneus genome introgression into 
domesticus genome can’t be excluded. A similar VKORC1 
condition has been already observed in Europe with the spretus 
× domesticus introgression, which is directly involved in AR 
resistance and can be positively selected when AR are used 
(Goulois et al. 2017). The mutation Ala26Ser is part of the 
resistance-giving spretus variant of VKORC1. Nonetheless, 
this mutation alone, as we observed it in Shakespear Regional 
Park, is not able to provide resistance (Goulois et al. 2017).

The mutation Tyr139Cys, found in the Auckland Zoo at 
high frequency, is the most common resistance-related SNP in 
mice and Norway rats (Rattus norvegicus) worldwide and it 
is known to confer resistance also in heterozygous condition 
to all the 1AR and some of the 2AR, like bromadiolone (Pelz 
et al. 2005; Markussen et al. 2008; Rost et al. 2009; Hodroge 
et al. 2011; McGee et al. 2020). As discussed before, the other 
mutation found in the Auckland Zoo, Ala21Thr, is related to 
resistance to bromadiolone, as well, making this location the 
only site with a high prevalence of AR resistance and more than 
one mutation. This site also had the longest-standing history 
of pest management and is bordered by some of Auckland’s 
earliest urban intensification. This suggests that a positive AR-
mediated selection is probably acting on resistance-giving SNPs 
in mice from this area. Fortunately, because of the risk of AR to 
park animals, the Auckland Zoo has already ceased using AR 
for pest management (S. Buley, pers. comm., Auckland Zoo), 
a decision which is independently reinforced by our results. 
In contrast, despite a history of AR use on the more recently 
urbanely intensified Waiheke Island, very little AR resistance 
was detected. This is possibly due to a founder effect that did 
not introduce any mutation to be selected upon. To support 
this, recurrent invasion is uncommon in Aotearoa/New Zealand 
(Russell & Clout, 2005) and there is genetic evidence for mice 
not to establish on islands even after recolonization occurs 
(Hardouin et al. 2010).

Overall, it is reassuring that at the sites where introduced 
mammal eradication has taken place using AR (Rotoroa, 
Tāwharanui and Shakespear), but mice are still present due 
to a combination of eradication survivors and/or reinvaders 
(Pichlmueller et al. 2020), AR resistance is not widespread in 
these populations. The results from these three sites supports 
the current best-practice by Department of Conservation 
toward use of AR (especially the potent 2AR brodifacoum) for 
eradication-only purposes (Broome et al. 2019). On Rotoroa 
Island, nearby to Waiheke Island, where mice survived a 2010 
rodent eradication attempt, no AR resistance was detected in 
the surviving population, that was subsequently eradicated 
in 2013. This is fortunate as had AR resistance been present 
and selected for following the first failed mouse eradication, it 
may have elevated the risk of failure in the subsequent mouse 
eradication (Holmes et al. 2015, Samaniego et al. 2021).

The clear landscape partitioning of VKORC1 mutations 
may reflect different origins of the mice populations included 

in this paper (Searle et al. 2009; MacKay et al 2013; King 
et al. 2016; Veale et al. 2018). Although, despite the presence 
of different mtDNA haplotypes in the study area, they all 
belong to clade E described by Jones et al. (2011) and so the 
different AR history rather than ancestral inheritance may 
cause the patterns we found. Indeed, it needs to be considered 
that VKORC1 mutations can arise independently and vary 
rapidly in frequency especially on islands and in AR-dense 
environments (Rost et al. 2009; Goulois et al. 2017; Gallozzi 
et al. 2024).

Although mice are a widespread human nuisance and 
biodiversity pest in Aotearoa/New Zealand, there is currently 
no single efficient tool for their landscape management at sites 
where eradication is not currently possible. Because AR are the 
most efficient current tool, there is a temptation to use them 
for long-term suppression. However, this entails an elevated 
risk of selection for AR resistance. Where mutations were not 
purged during foundational events, such AR resistance can 
be selected for rapidly, particularly where mice are not the 
primary target of AR. This does not mean that AR should not 
be used for long-term suppression at sites of high biodiversity 
or other value, but our results emphasise that such use of AR 
should be done with the knowledge that the timespan for such 
use may very much be finite.

Our survey revealed that even across a moderate geographic 
region such as the greater boundaries of one city, there can be 
important site-specific genetic diversity in AR resistance related 
to the history of AR use (whether mutations were selected 
for) and potentially also to the level of founder effect they 
experienced (whether mutations were purged) and the origin 
of mouse populations (which mutations could be introduced). 
For this reason, we urge land managers to be mindful of their 
use of AR for rodent management and consider integrated 
pest management strategies and alternative tools. Where 
eradication of a mouse population is planned, we recommend 
mice be screened for the genetic pre-cursors to AR resistance, 
lest it contribute to the risk of eradication failure (e.g., Lord 
Howe Island; Harper et al. 2020). As supported by previous 
studies (Rached et al. 2022; Yiğit et al. 2023; Carromeu-Santos 
et al. 2023; Gallozzi et al. 2024) and based on the average 
frequency of individuals with missense SNPs found here 
(0.25), we suggest a sample size of 15 covering multiple sites 
across a given area should be sufficient for this purpose (with 
25% prevalence there is 99% probability of detection from 15 
individuals) – a sample size that is typically collected prior 
to eradications anyway for the purpose of diagnosing causes 
of eradication failure (Russell et al. 2007, Pichlmueller et al. 
2020). Given the increased understanding of mouse impacts 
on native biota, we recommend investment into landscape 
control tools for mice that are not reliant on AR.
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