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RESEARCH

Abstract: Passive acoustic monitoring (PAM) is a critical tool in the monitoring and conservation of native 
species but until now its use in the detection of invasive species has been under-utilised. We present the first 
publicly available dataset of invasive common brushtail possum (Trichosurus vulpecula) vocalisations including 
3500 annotated field recording segments. This study presents an automatic classification model designed and 
fine-tuned to detect the presence/absence of possums, achieving 98.4% test set accuracy and F1 score of 0.983. 
To our knowledge, this is the first model of its kind applied to the target taxa. We also discuss the development 
of computational tools in the context of invasive species detection, conservation potential, and critical challenges 
such as vocalisation frequency and feature sparsity. All data and code are publicly available.
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Introduction

Bioacoustic monitoring is commonly applied to avian species 
in New  Zealand (Priyadarshani et  al. 2016; Mortimer & 
Greene 2017; Bombaci & Pejchar 2018; Jahn et al. 2022), 
with results demonstrating performance benefits compared to 
human observations (Darras et al. 2019; Hoefer et al. 2023). 
Bioacoustic monitoring is also applied worldwide (Stowell 
et  al. 2018) to monitor the biodiversity of ecosystems and 
inform conservation decisions, with the majority of terrestrial 
studies focused on bats and birds (Sugai et  al. 2019). In 
New Zealand, bioacoustic monitoring tools have not yet been 
applied to invasive mammalian species. This is in part due to 
biological constraints (Ross et al. 2023), as the target species 
is not highly vocal, and, the resource costs and human labour 
required to collect and analyse raw field recordings. Over 
recent years passive acoustic monitoring (PAM) tools and the 
broader field of computational bioacoustics have progressed 
significantly. Computational bioacoustics includes automatic 
segmentation techniques, used to identify features of interest, 
and classification techniques that aid in the analysis of acoustic 
data. Computational bioacoustics recent progress is in part due 
to the availability of affordable PAM devices and progress in 
machine learning (Stowell 2021). PAM presents a cost-effective 
tool for landscape-scale bioacoustic monitoring of challenging 
species that previously may have been considered infeasible. 
This presents an opportunity to extend current monitoring 
tools for the detection of challenging invasive species such 
as possums. PAM has the potential to provide a cost-effective 

monitoring and detection and automated classification can 
improve the scalability of data collection and analysis.

We present the first publicly available dataset of common 
brushtail possum (Trichosurus vulpecula) vocalisations as well 
as a classification model developed to detect the presence/
absence of possum vocalisation in long term field recordings. 
We also discuss the challenges and opportunities associated 
with acoustic monitoring of typically less vocal invasive 
species. We hope that these contributions provide a useful 
resource to accelerate the development of improved bioacoustic 
monitoring tools in New Zealand.

Methods

Data collection
Audio was primarily collected from the Manaaki Whenua 
Landcare Research, Animal Facility in Lincoln, Canterbury 
New  Zealand. Secondary recordings were collected from 
Governors Bay, Canterbury at Living Springs and were 
provided by The Cacophony Project. Secondary recordings 
were only used for spectral profiling and to inform study 
design (microphone testing, recording duration) at the Lincoln 
recording location. Field recording collection began in June 
2021 and continued until January 2023. Three AudioMoth 
microphones (Hill et  al. 2019) were used with recording 
bandwidths up to 48 kHz and with a recording interval varying 
from 7pm to 7am in the winter and 9pm to 5am in the summer. 
Field recordings are five minutes in length and recorded at 

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0869-7717
https://orcid.org/0000-0002-5680-1478
https://orcid.org/0000-0002-1528-809X
https://orcid.org/0000-0001-5149-722X
https://orcid.org/0000-0002-8030-6098


2	 New Zealand Journal of Ecology, Vol. 48, No. 1, 2024

five-minute intervals using a 50% recording duty cycle (Fig. 1). 
Audio was collected from multiple locations within the facility 
spaced roughly 50 m apart. The position of the microphones 
was constrained by the location of target species, initially 
possums, mustelids, rats, and cats. Microphones remained at 
these locations for the duration of the study. Initially, devices 
were set up at the Animal Facility at a recording bandwidth of 
250 kHz for a period of two weeks. Spectral profiling of target 
species was completed, and the bandwidth was adjusted to 48 
kHz for subsequent data collection. The format of all audio files 
was standardised. All raw field recordings are single-channel 
and sampled at 48 kHz. Field recordings were stored using 
waveform audio file format (WAV). This is an uncompressed 
format and was selected for its higher quality and standardised 
support across a number of platforms. WAV format does result 
in larger file sizes, each five-minute field recording is 28.8 MB. 
Annotated segments have been downsampled to 16 kHz for 
the application of possum detection.

Long-term data collection found that the target species 
are mostly active (vocalising) during the evening and morning 
demonstrating crepuscular characteristics. Given changes 
in daylight hours across the year, recording periods were 
adjusted accordingly. These observations are not necessarily 
representative of the wider population given the small sample 
size and captive environment. We also observed higher 
vocalisation rates at the Lincoln recording location compared 
to data collected at other field locations such as Governors Bay, 
Canterbury as well as recordings shared by the Cacophony 
Project from various locations.

Dataset
All raw field recordings and annotated segments are available 
through the public Kaggle (McEwen et al. 2024). In total, 
1236 five-minute field recordings are included in the dataset. 
These recordings were collected between June 2022 and 
January 2023. We comment on audio collected outside of 
this time frame (Governors Bay and Cacophony Project 
audio) but it is not included due to differences in bandwidth, 
microphone configuration and location. We use a wavelet-
based segmentation approach to extract features of interest 
from the raw field recordings resulting in 3500 5 second 
segments. This segmentation approach is based on a wavelet 
packet decomposition (WPD) approach (Priyadarshani 
et al. 2020) and applied using the Listening Lab annotator 
(McEwen et al. 2023), an open-source platform developed to 
analyse sparse acoustic features. Each of these segments were 
manually analysed and labelled as possum or noise. Wavelet 

Figure 1. Example of five-minute field recording

packet decomposition is used as an efficient data reduction 
step hence recall is prioritised, as the true detection of positive 
features outweighs the introduction of false positives which are 
reanalysed later using the classification model. This results in 
precision/recall results of 0.365/0.861 respectively. Note that 
annotations are for binary classification e.g. possum absence/
presence therefore these classes, particularly absence, contain 
unlabelled sub-classes such as wind, rain, traffic, and non-target 
vocalisations (birds, farm animals). The 3500 segments are 
separated into training (3000 samples) and test (500 samples) 
sets. The training set contains 1130 possum vocalisations 
and 1870 noise sources. The test set contains 187 possum 
vocalisations and 313 noise sources. Both the training and 
test sets contain imbalanced data that reflects the output of the 
segmentation stage. The occurrence of possum vocalisations 
across the duration of the study was not temporally constant 
hence the training and test sets have been uniformly sampled 
across the entire set to achieve a consistent proportion of 
possum to non-possum segments.

Model evaluation
Using the invasive species dataset we fine-tune a pre-trained 
transformer-based model Audio Spectrogram Transformer 
(AST) (Gong et al. 2021a). Hyperparameter selection is based 
on the authors’ recommendations (Gong et al. 2021b). The 
model was trained for 25 epochs with model achieving the 
highest validation accuracy stored. An Adam optimiser with 
an initial learning rate of 1e-5 was used and halved every 
five epochs after the first ten epochs. Model training is fully-
supervised using the training set and evaluated using the test 
set. AST is pre-trained on 527 audio classes and therefore the 
default output is an embedding of 527 elements. This model 
takes a spectrogram as an input. To satisfy the model input 
requirements and due to the bandwidth of the target species, 
input audio is downsampled to 16 kHz. As we are training 
the model for a binary classification task, the embeddings of 
AST are fed into a secondary fully connected network (FCN) 
consisting of two layers with 100 and 2 neurons respectively 
as a simple transfer learning task (Fig. 2).

We also evaluate a commonly applied pre-trained 
ResNet-50 architecture (He et  al. 2016). Dufourq et  al. 
(Dufourq et al. 2022) also demonstrate the strong classification 
performance and low data requirements of ResNet-50 when 
comparing alternative pre-trained Convolutional neural 
network -based models. With the rapid development of 
transformer-based models, we also evaluate two transformer 
models AST (Gong et al. 2021a) which, like ResNet, operates 
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Figure 2. Classification pipeline developed for possum detection using pre-trained Audio Spectrogram Transformer (AST) model and 
fully connected neural network (FCN) for transfer learning.

on the spectrogram. We also evaluate HuBERT (Hsu et al. 2021) 
which operates directly on the 1-D waveform. Hyperparameter 
selection for ResNet-50 (He et al. 2016) and HuBERT (Hsu 
et al. 2021) was based on the recommendations of the model 
authors. Due to the imbalanced datasets, F1 score as well as 
precision and recall metrics are provided when evaluating 
classification models.

Results

We present observations from the collected field recordings 
including spectral profiling of common possum vocalisations 
and other invasive species. We also discuss the potential 
conservation benefits and challenges of applying bioacoustic 
monitoring to invasive species in New Zealand.

Spectral profiling
Initial testing using a maximum bandwidth of 250 kHz enabled 
the analysis of the target species’ full spectral band. Spectral 
profiles of three common vocalisation types were found. 
The spectrograms and spectral profiling show temporal and 
spectral features up to 24 kHz (sampling at 48 kHz; Fig. 3). 
A spectrogram is a time-frequency representation generated 
using the short-time Fourier transform (Sejdić et  al. 2009) 
displaying signal amplitude over time and frequency. The 
spectral profile is generated using a Fourier transform and 
displays amplitude (decibels) at logarithmically spaced 
frequency (Hz). Both spectrograms and spectral profiles are 
generated using Audacity® (Audacity 2023).

The most common vocalisation, chitter (Fig. 3a), has 
consistent peaks at 2 and 8 kHz and ranges in length from 
1–5 s. Based on observations (Kean 1967) this vocalisation 
corresponds to social calls. This call contains distinct and 
repeated impulses, 0.2–0.5 s in length. The next most common 
vocalisation, screech (Fig. 3b), was also common and is 
characterised by a distinct peak at 2 kHz that taper off at higher 
frequencies. These vocalisations were shorter, ranging from 
1–2 s. These vocalisations align with Kean’s observations 
of aggressive behaviour (Kean 1967). We also note a third 
category, grunt (Fig. 3c). This vocalisation is characterised by 

a short, transient feature, less than 0.5 s in length. We observed 
features extending up to 24 kHz. This vocalisation may also 
correspond to aggression or disturbance (Kean 1967).

There is limited literature characterising the vocalisations 
of possums. Researchers have observed hearing sensitivity 
increasing from 2–15 kHz and continuing up to 35 kHz (Osugi 
et  al. 2011). These observations align with microelectrode 
mapping (Gates & Aitkin 1982). The results of spectral 
profiling agree with the literature with key features occurring 
from 2–15 kHz.

Classification
We demonstrate the use of this dataset to fine-tune a pre-trained 
model in a simple binary classification transfer learning task. 
Convolutional neural network (CNN) based audio classification 
remains a common approach. Audio representations such as 
spectrograms or mel-frequency cepstral coefficients (Abdul 
2022) can be represented as a single-channel image. We 
evaluate the models on a two-class binary output presence/
absence of possum. Using the test dataset, we compare 
the test accuracy for each model. Due to the test set being 
unbalanced F1 score is referenced. Both transformer models 
outperformed ResNet-50 which achieved an F1 score of 0.945. 
AST marginally outperformed HuBERT with an F1 score of 
0.983 and 0.945 respectively (Table 1).

Vocalisation three (grunt) was commonly misidentified. 
For evaluation of AST on the test set, 44% of incorrectly 
classified segments containing this vocalisation subclass. Other 
misidentification included false-positive identification of bird 
song (30%). The remaining misidentifications contained low 
signal-to-noise ratio features with either high background 
noise or low-volume possum vocalisations.

Discussion

Potential and challenges
Computational bioacoustics is a rapidly advancing field, 
allowing monitoring of cryptic species, previously infeasible to 
monitor. PAM devices are generally an affordable monitoring 
option compared other mode such as manual monitoring and 
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Figure 3. Spectral profiling of common possum vocalisations showing spectrogram (left) and spectral profile (right) a) chitter (2–10 
kHz) b) screech (2 kHz) c) grunt (2–24 kHz). The yellow regions of the spectral profile denote corresponding spectral features, and the 
dashed line represents the frequency at which the feature occurs.

camera-based detection. However, there are key challenges that 
affect bioacoustic monitoring feasibility including bandwidth 
and feature sparsity.

Bandwidth
Vocalisations of possums have key spectral features within 
human hearing ranges 16–22 kHz. There is potential for 
standard PAM tools to be used for monitoring using commonly 
used bandwidths. This is not the case for all invasive species. 
Other species such as rats vocalise at higher frequency than 
other common sound profiles and harmonics. This reduces 
spectral overlap with other sound sources but comes with 
practical challenges. Recording at higher frequencies requires 

higher bandwidths, above that of many affordable devices. 
Recording at this level results in higher power consumption 
and larger data sizes (more storage requirements). In addition 
to this, existing pre-trained models are generally developed 
for natural language processing (NLP) applications and 
therefore biased towards human-perceivable sounds limited 
to 16–22 kHz. This is therefore a challenge when applying 
pre-trained models to bioacoustic applications with higher 
bandwidth audio.

Feature sparsity
Another key challenge for this application and other bioacoustic 
applications focused on less vocal species is feature sparsity. 



5McEwen et al.: Possum bioacoustic monitoring dataset (alternative)

Table 1. Evaluation of models ResNet-50, audio spectrogram transformer (AST) and HuBERT using the test dataset.
__________________________________________________________________________________________________________________________________________________________________

Model	 Accuracy (%)	 F1	 Precision	 Recall
__________________________________________________________________________________________________________________________________________________________________

ResNet-50	 90.2	 0.892	 0.882	 0.908
AST	 98.4	 0.983	 0.982	 0.984
HuBERT	 94.8	 0.945	 0.948	 0.942
__________________________________________________________________________________________________________________________________________________________________

At the primary recording location with captive animals, only 
0.4% of the audio collected contains features of interest 
(invasive species vocalisations). For non-captive animals at 
lower densities, this is likely to be significantly lower. Feature 
sparsity combined with monitoring at a landscape scale 
accentuates the data imbalance challenges such as the amount 
of raw audio collection and analysis required for meaningful 
information to be extracted (i.e. occupancy, abundancy etc). 
Understanding how often features occur within data is useful 
when considering data collection requirements, human labour/
analysis costs, and modelling feasibility. Understanding the 
point at which a challenging bioacoustics application becomes 
an infeasible one is an important but challenging question. The 
feasibility of bioacoustic monitoring needs to be evaluated with 
spatial, temporal and behavioural considerations in mind as 
well as resource and human labour costs. Not all species are 
well-suited to bioacoustic monitoring and other monitoring 
tools are available.

Applying computational tools, such as automatic 
segmentation and classification, can improve the feasibility of 
monitoring even at low densities. For example, we demonstrate 
model training using a fully-supervised learning approach. We 
applied low-data requirement computational tools such as WPD 
segmentation (Priyadarshani et al. 2020) and few-shot learning 
approaches (McEwen et al. 2023) to aid in analysis. These 
approaches are currently under-utilised (Hoefer et al. 2023) 
with only 17% of studies applying computational approaches.

Conclusion
We present the development of the first publicly available 
audio dataset of the common brushtail possum (Trichosurus 
vulpecula) as well as the development of an automatic 
classification model. Evaluation of this model demonstrates 
high classification performance, this model can be applied 
to aid in the detection of sparse possum vocalisations within 
long-term field recordings. The development of computational 
tools for, typically less vocal, invasive species comes with a 
number of challenges including feature sparsity and recording 
frequency. The feasibility of bioacoustic monitoring needs to be 
accompanied by spatial, temporal (seasonal), and behavioural 
(across age groups and sexes) considerations including further 
research into distance-to-detection and call attenuation. The 
development of alternative datasets containing labelled possum 
vocalisations would also allow the model to be evaluated 
in terms of generalisability. We hope that this new dataset 
and method will aid the broader conservation community 
in the continued development of improved detection tools, 
particularly for species that may be too costly to monitor 
previously.
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