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Abstract: Forest restoration is an activity that can be readily undertaken to address both the climate and 
biodiversity crises. In Aotearoa New Zealand, aspirations for large-scale native forest restoration are growing 
across governmental and private sectors and a considerable focus to date has been on forest establishment 
by actively planting native trees. In contrast to actively planting trees, considerable proportions of Aotearoa 
New Zealand have a demonstrated potential for passive tree establishment through natural regeneration processes, 
subsequent to land use change away from pastoralism or exotic forestry. At a policy and land manager level, 
knowledge is lacking over the main considerations that should determine whether native restoration will most 
efficiently be achieved by active tree planting or by natural regeneration. Whether restoration follows active 
or passive establishment methods (or an intermediate point along the active-to-passive continuum), adequate 
forest management is essential to achieve high levels of native forest health, functionality, and permanence. 
We describe a step approach for assessing at a site scale whether forest restoration can most efficiently be 
achieved via active or passive methods, or combinations of the two. Our assessment covers the main biotic 
and abiotic factors which explain the probability of native tree establishment. These factors are mean annual 
rainfall, mean annual air temperature, proximity and composition of adjacent seed sources, landform type, 
slope aspect, slope, topographic exposure, and the presence of existing woody cover. We then describe the 
main management interventions that will be required to support successful natural regeneration outcomes and 
highlight the importance of strategic natural regeneration for achieving large scale restoration for the betterment 
of both our climate and biodiversity. 

Keywords: biodiversity restoration, forest management, forest regeneration, landscape restoration, large-scale 
native forest restoration, restoration, tree planting

Introduction

Large-scale restoration of diverse native forests (hereafter 
restoration) is one main avenue for humans to effect positive 
environmental change in the face of intertwined climate and 
biodiversity crises (Cohen-Shacham et al. 2016; Seddon et al. 
2019). While significant opportunities for restoration have 
been identified (Bastin et al. 2019; Fargione et al. 2021), 
knowledge is required to support the selection of appropriate 
forest establishment and management methods (Meli et al. 
2017). While actively planting trees has received considerable 
political and economic support (Fleischman et al. 2020), 
uncertainty remains over the cost-effectiveness (Molin et al. 
2018) and the long-term ecological outcomes of native tree 
planting (Smale et al. 2001; Chazdon 2008; Meli et al. 2017; 
Fleischman et al. 2020; Holl & Brancalion 2020). Further, 
the high financial costs associated with native tree planting 
prohibits its application at landscape scales (Crouzeilles et al. 

2020). For instance, the average cost for native tree planting 
in Aotearoa New Zealand (ANZ) was estimated in 2021 to 
be NZ$23 000 ha−1 versus lesser (but highly variable) costs 
for regeneration of NZ$595–15 000 ha−1 (Forbes 2021a). By 
comparison, restoration through natural forest regeneration is 
regarded by some as uncertain (Brancalion et al 2016), but in 
favourable circumstances regeneration has been successfully 
demonstrated at landscape scales (Wilson et al. 1994; Sullivan 
et al. 2007; Holl & Aide 2011; Wiser et al. 2011) and is an 
approach to restoration which has even been shown to provide 
greater ecological services (e.g. above ground biomass, soil 
erosion control, and water yield; Hua et al. 2022) and be 
preferred over native tree planting, wherever possible (Di 
Sacco et al. 2021).

Native forest self-sown regeneration (hereafter 
regeneration) is the natural process of native forest flora 
establishing on land, often where forest cover has been 
disturbed or cleared (Parrotta 1993). Aggressive re-invasions 
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by such regeneration have been seen as producing problematic 
agricultural weeds in ANZ (Leonard 1962, Bascand & Jowett 
1981; Grigg 1986). Large-scale regeneration commonly can 
restore environmental conditions and native biodiversity 
(Carswell et al. 2012; Strassburg et al. 2016), conserve soil 
and protect watersheds (Yang et al. 2018), aid climate change 
mitigation and adaptation (Ausseil et al. 2013; Chazdon et al. 
2016; O’Neill et al. 2020), and with correct policy settings, 
can support rural economies and livelihoods (Chazdon et al. 
2020). Given Earth’s changing climate, naturally regenerating 
forests can exhibit greater resilience compared to planted forests 
(Jactel et al. 2017) as they are adapted to local conditions and 
to other colonising taxa (Chazdon 2016).

The facilitation of mid-late successional species causes 
successional development which can be identified by temporal 
changes in species plant traits (e.g. increasing shade tolerance, 
slower growth rates, longer plant lifespan, and taller stature). 
Evidence of succession towards a pre-disturbance community 
can be found where species turnover results in a forest’s 
composition, structure, and function becoming increasingly 
similar to local examples of mature intact native forest 
(Christensen & Peet 1984; Reay & Norton 1999). However, 
in some circumstances, regeneration and succession will be 
limited or unsuccessful and the passive restoration approach 
should be replaced, or supplemented, by active methods to 
achieve an intermediate level of management intensity along 
the active-to-passive continuum (Chazdon et al. 2021). Indeed, 
even passive regeneration requires some form of management 
and most restoration projects will operate across the spectrum 
from passive to active practices (Holl & Aide 2011; Norton 
et al. 2018; Chazdon et al. 2021; Forbes et al. 2021).

Regeneration has led to significant expansions in forest 
cover at global scales, particularly following cessation of 
agricultural activities (e.g. in the Neotropics: Nanni et al. 
2019; Brazilian Atlantic rainforest: Crouzeilles et al. 2020; 
in Europe: Verburg & Overmars 2009; Thers et al. 2019) or 
following major shifts in socio-political regimes (Camarretta 
et al. 2018; Song et al. 2018). Naturally regenerating woody 
native communities are today a prominent feature of the 
vegetation cover of ANZ, particularly in zones of higher 
soil moisture, warmer air temperatures, and closer proximity 
to forest cover (Mason et al. 2013). Compositions of early-
successional communities are dominated by species such 
as mānuka (Leptospermum scoparium, Myrtaceae), kānuka 
(Kunzea ericoides, Myrtaceae), māhoe (Melicytus ramiflorus, 
Violaceae), putaputawētā (Carpodetus serratus, Rousseaceae), 
and pōnga (Cyathea dealbata, Cyatheaceae), some of which 
can be recruited within an initial cover of invasive exotic flora, 
such as gorse (Ulex europaeus, Fabaceae; Sullivan et al. 2007), 
and which collectively cover c. 1.6 M ha of ANZ’s land area 
(Wiser et al. 2011). Taking the Wellington region as an example, 
9.7% and 3.8% of the region has cover of mānuka/kānuka and 
broadleaved scrub respectively (Dymond & Shepherd 2004), 
and these communities provide sites for recruitment of tree 
species of greater shade tolerance and longevity.

Specific examples of regeneration have been documented 
over tens to hundreds of hectares on disturbed land following 
exotic plantation clear-fell (Lambie & Marden 2020; Forbes 
et al. 2021; Forbes 2021b) or on retired livestock pastures (Allen 
et al. 1992; Wilson 1994; Young et al. 2016). In contrast, native 
tree plantings have been established at comparatively small 
scales and often in contexts where regeneration processes are 
dysfunctional, such as where regeneration sites lack sufficient 
natural propagule sources (Overdyck & Clarkson 2012), are 

extremely dry (Dollery et al. 2018), are weed infested (Wallace 
et al. 2017), or where fundamental biotic impacts such as 
altered soil hydrology or soil compaction exist (Sullivan et al. 
2009). While some examples of regeneration within planted 
native tree stands exist (Reay & Norton 1999), in many cases 
it appears regeneration and recruitment in native planted 
stands is constrained (Sullivan et al. 2009; Roberts 2018). 
Inevitably, planted native stands are susceptible to the same 
abiotic and biotic limits on regeneration and succession which 
occur in naturally regenerating stands. Therefore, in contexts 
of conditions unfavourable to regeneration, where natural 
recruitment is unlikely to occur, planting offers no long-term 
certainty regarding forest successions actually occurring.

Given most restoration opportunities in ANZ occur in 
agriculturally productive landscapes, and the aspiration in 
ANZ to significantly expand permanent native forest cover 
(Climate Change Commission 2021), restoration needs to 
involve much more than just planting trees. When enabling 
landscape-scale restoration through regeneration, the approach 
must address the full range of dimensions (ecological, social, 
political, and economic; Aronson et al. 2010) that led to the site 
being deforested, and that govern any future land use change.

From a policy perspective, common questions over 
regeneration include: where can it occur? How long will 
recovery of forest structure take? How much area can be 
regenerated? Will the species composition of the regenerating 
forest deliver the desired outcomes? (Arroyo-Rodriguez et al. 
2017). We note that at a practical level in ANZ, guidance is 
lacking to support land managers undertaking site assessments 
of regeneration potential and selecting from a range of possible 
forest management interventions and the circumstances when 
they are necessary and why they are required to passively 
restore native forest cover (Pohatu et al. 2020). Many factors, 
both biotic and abiotic, contribute to both the nature and 
timeframes over which regeneration will occur (Hobbs & 
Norton 2004; Holl & Aide 2011). We acknowledge that, within 
natural limits, many land areas will regenerate if given enough 
time—possibly requiring many decades or centuries. However, 
in the face of our urgent and unfolding environmental crises, 
the focus of our paper is on the rapid expansion of natural 
forest cover using regeneration. We describe and illustrate 
the main factors which indicate the likelihood of rapid 
regeneration and ongoing progression within 20–30 years of 
land retirement. Specifically, we provide personally styled 
and practical guidance for land managers to make site-specific 
decisions regarding (1) how to identify whether regeneration 
is a viable forest establishment method in the immediate to 
short term, (2) what main management interventions can be 
employed to ensure adequate and timely regeneration and 
successional advancement, (3) when management interventions 
are necessary, and (4) why these interventions are required.

Knowing when native forest regeneration is for 
you

Where won’t regeneration happen?
Regeneration will be limited in locations which experience 
extreme climatic conditions. Many areas of ANZ feature 
dryland, primarily in rain shadow regions east of the main 
divide (i.e. 19% of ANZ’s total land area; Rogers et al. 2005; 
Walker et al. 2009). Periods of either hot (e.g. at sheltered and 
sunny microclimates lacking forest cover; Hawkins & Sweet 
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1989) or cold temperatures will limit tree occurrence (e.g. 
at higher elevations and higher latitudes; Mason et al. 2013) 
and periods of intense freezing will limit forest establishment 
(Sakai & Wardle 1978).

Regeneration is dependent on a source of seeds, meaning 
regeneration will be limited in landscapes where native forest 
cover has been severely depleted (Overdyck & Clarkson 
2012). Several biotic threats have the potential to preclude 
regeneration, such threats include excessive mammalian 
herbivory (e.g. from domestic or feral browsing mammals; 
Wardle et al. 2001; Wilson et al. 2003) or intense competition 
for light from structurally dominant plant pests, e.g. wandering 
Willy Tradescantia fluminensis, Commelinaceae (Standish 
et al., 2001); bramble Rubus fruticosus agg. Rosaceae 
(McAlpine et al. 2018). However, these limiting effects can 
usually be at least partly addressed through forest management 
interventions (e.g. plant or animal pest control; Standish 
2002; Dodd et al. 2011). Regeneration can also be limited by 
physically modified (e.g. landslide, drainage; Blaschke et al. 
1992) or unnatural soil properties (e.g. heavy compaction, 
natural chemical toxicity/mineral belt; Walls & Laffan 1986; 
Bassett et al. 2005).

Is native forest regeneration an option at your location?
Here we identify widely applicable factors which have been 
proven to affect the likelihood of regeneration over the first 
couple of decades following land retirement (Fig. 1). These 
factors are supported by national-scale predictions of where 
native regeneration is likely to occur (Mason et al. 2013). 
Before examining these factors, it is important to understand 

Figure 1. A stepped approach for determining active or passive restoration mode at the site scale in Aotearoa New Zealand. The assessment 
of regeneration potential clarifies the level of effort required for successful restoration based on a continuum from active-to-passive 
approaches.

that in addition to our widely applicable factors are a myriad 
of additional, local, idiosyncratic aspects which might apply to 
your site and either help or hinder regeneration outcomes. Some 
examples of these additional aspects include distinctive local 
climate phenomena (e.g. moist coastal air flows), disturbance 
agents and their frequency and intensity (e.g. altered grazing 
regime or soil disturbance from tectonics or erosion processes), 
and the levels at which pollination and dispersal vectors 
are functioning (e.g. nectivorous and frugivorous animals). 
Although these aspects are important at a site scale, here we 
propose the main factors which form the starting point for an 
assessment of the likelihood of regeneration.

The first two steps should be to assess whether your land 
area can support forest and whether adequate tree regeneration 
is occurring. Where this can be confirmed then further analysis 
using the factors below is unnecessary. During pre-human times 
ANZ featured 85–90% forest cover. Unforested sites were 
limited to those below the alpine treeline (Ewers et al. 2006) 
that were regularly flooded, subjected to regular freezing, or 
were cliffs, sand dunes, leached shallow or ultramafic soils, 
or forested areas recently disturbed (McGlone 1989).

Adequate tree regeneration will be apparent where stem 
densities are sufficient to form a forest canopy and where 
the species present have the longevity and stature to form 
independent forest in the longer term and ultimately to facilitate 
the regeneration of more shade-tolerant species. Look for 
signs of native tree regeneration occurring at or near your site. 
Search locations which are most likely to support regeneration. 
Search steep south facing banks where climate stressors are 
least and browsing mammals will have had limited access and 
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less influence on regenerating vegetation. Search gullies where 
soil moisture and topographic shelter might aid regeneration, 
and other sites where disturbance of regenerating vegetation 
is infrequent (e.g. inaccessible portions of road verges).

Consider the influence that plant or animal pests are 
currently having on regeneration and how the distribution and 
rate of regeneration might be improved with pest management. 
Determine whether, and in which areas, native shrub and tree 
species are establishing at densities that will form a closed 
canopy when mature (e.g. > 1111 stems ha−1 at < 3 × 3 m 
spacing; Bergin 2012). You can be most optimistic where you 
already have regeneration in gullies on your property that is 
spreading onto adjacent slopes, especially where the species 
regenerating are those that will grow to a reasonable height 
(e.g. tree species of the genera Fuscospora, Lophozonia, 
Griselinia, Kunzea, Melicytus, Pittosporum, Podocarpus, 
and Pseudopanax).

Where your site is capable of supporting forest and 
showing abundant regeneration you can be confident that forest 
establishment by regeneration is a good option on your land. 
However, where regeneration is only patchy or non-existent, 
the following factors (Fig. 1) can be examined to clarify where 
along a continuum from active-to-passive management a site 
is positioned for successful forest establishment.

Assess your site’s mean annual rainfall and air temperature. 
While there are no absolute climate thresholds, regeneration 
at unforested sites with mean annual rainfall of < 1100 mm 
year−1 is likely to be at least seasonally constrained (Mason 
et al. 2013). In cool climates (e.g. mean annual temperature < 
9℃) forest tree establishment and regeneration will be slow 
and is unlikely to meet management objectives (Mason et al. 
2013). Determine whether rainfall at your site is greater or 
less than 1100 mm year–1 and whether your site’s mean annual 
temperature is greater or less than 9℃.

Next, consider the wider landscape and whether there 
are sources of forest seed, and the composition of those seed 
sources. The ability of seeds to reach your site will have a big 
influence on the composition and structure of the regeneration. 
Proximal and floristically diverse seed sources are optimal, and 
tree regeneration is likely to be supported where natural forests 
occur within a c. 5 km radius of your site (with closer seed 
sources being more effective; Mason et al. 2013). Determine 
what proportion of the landscape surrounding your site supports 
indigenous forest cover and whether those seed sources are 
diverse or homogeneous in their species composition. Sites 
devoid of native forest for multiple years are unlikely to 
have substantial native soil seed banks but might contain 
considerable exotic seed loads (Overdyck & Clarkson 2012; 
Broadfield & McHenry 2019).

Now, consider the types of landforms (e.g. ridge, face, 
terrace, or gully), the aspect of sloping sites (e.g. cardinal 
direction: N, E, S, W), slope (Carswell et al. 2013; Murphy 
et al. 2015; Forbes et al. 2021), and the level of topographic 
exposure (e.g. the angle to the horizon on eight cardinal 
directions from the location of your assessment; McNab 1993). 
This step provides a within-site assessment of the finer-grain 
processes among landforms, microclimates, soil properties, 
and regeneration (Cheesman et al. 2018; Jucker et al. 2018). 
Regeneration tends to commence sooner in gullies and on 
lower portions of faces compared to ridges and upper slope 
landforms (Wilson 1994). Microclimates will be warmer and 
drier on northern aspects compared to southern (De Frenne 
et al. 2021), meaning southern aspects are likely to regenerate 
faster than northern aspects (Carswell et al. 2013). Shelter 

afforded by surrounding topography affects microclimate, 
such as modifying the influence of the predominant wind, 
regulating the drainage of cool air, and controlling the duration 
of incoming solar radiation throughout each day and season 
which in combination affects site productivity (McNab 1993).

Lastly, assess the presence and level of cover of woody 
species. The presence of existing woody cover, even if exotic, 
e.g. Scotch broom Cytisus scoparius, Fabaceae, or gorse 
(Sullivan et al. 2007; Burrows et al. 2015), can facilitate 
regeneration of shade-tolerant native species by ameliorating 
the climate and reducing competitive interactions with other 
light-demanding species, e.g. dense swards of invasive or rank 
pasture exotic grasses (Sullivan et al. 2009) through canopy 
shading (McIntire & Fajardo 2014).

Assessing these factors will help to identify the main 
limitations on regeneration at your site. If few or no factors 
are assessed positively (Fig. 2a; Table 1), then a more active 
approach to restoration will be required and expert advice 
should be sought on how best to more actively establish native 
forest cover (e.g. seek advice on species choice, planting 
spacing, planting scale and timing, and other management 
interventions required at your site). Where one or more 
factors are assessed as negative (Fig. 2b–d; Table 1), further 
investigate the most appropriate restoration mode and whether 
management interventions can be used to achieve passive 
restoration. Where all factors are assessed as positive (i.e. 
climate thresholds are exceeded, abundant local seed sources 
are present, signs of adequate regeneration exist), with adequate 
management of biotic threats, your site has a high likelihood 
for successful passive restoration (Fig. 2e, f; Table 1).

Our guidance assumes that management aims to achieve 
forest cover by regeneration within several decades. It is 
possible that drier and cooler sites with fewer or more distant 
seed sources will also regenerate; however, this process would 
occur over longer timeframes. Where a likelihood for passive 
restoration through regeneration is indicated the next step is 
to determine any specific biotic threats (i.e. animal, e.g. Allen 
et al. 1984; or plant pests, e.g. Wotton & McAlpine 2013) or 
other barriers to regeneration (e.g. rank exotic grassland; Miller 
& Wells 2003) and the need for other supportive management 
interventions, e.g. canopy disturbance (Tulod & Norton 2020), 
enrichment planting (Forbes et al. 2020), a limited period of 
strategic grazing to reduce ground cover competition (Miller 
& Wells 2003), at your site.

The what, when, and why of native forestry 
interventions

In the context of ANZ’s current landscapes, a gradient of 
management approaches exists (Fig. 3). Approaches range 
from (1) directly planting a diverse canopy in deforested 
landscapes (Fig. 1. Active restoration mode, high establishment 
effort required, plant to establish a native forest), (2) planting 
a homogeneous canopy of early successional woody species 
to shade out grass and kick-start natural regeneration in 
landscapes with native seed sources, (3) augmenting natural 
regeneration with enrichment interventions to facilitate the 
return of rare or absent species (Fig. 1. Intermediate restoration 
mode, moderate establishment effort required, enrichment 
plant and address competition), (4) to just managing the worst 
pests while letting a site naturally regenerate (Fig. 1. Passive 
restoration mode, low establishment effort, manage natural 
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Figure 2. Site examples of restoration mode determined by the stepped approach shown in Fig. 1. Site locations and data for the factors 
which underpin the restoration mode assessment are given in Table 1. Sites (a) and (b) require fencing and restoration planting. Sites (c) 
and (d) require animal pest control/fencing and enrichment planting. Options (e) and (f) require animal pest control and would benefit 
from enrichment planting coupled with competition treatments.

regeneration). Even passive forest establishment requires the 
support of management interventions to address the effects of 
pests or altered ecological processes on the developing forest 
composition and structure.

If regeneration projects are being considered as biological 
carbon sinks such management interventions support the 
concept of additionality. Additionality is a core aspect of 
quality assurance of greenhouse gas emissions reduction and 
sequestration activities. It is used in a climate change context 
to mean net atmospheric carbon reduction or removal needs 
to be over and above that which would have arisen anyway 
in the absence of the given activity or project (Valatin 2011). 
Determination of additionality is not simple but can have a legal/
regulatory, financial, or environmental basis whereby the test 
indicates that there is a net benefit from a land use change that 
would not have happened under business-as-usual conditions.

Enrichment treatments aim to subsidise deficits in natural 
forest establishment and build representativeness and diversity 
through either in-fill planting of seedlings, seed sowing (Cole 
et al. 2011), or stimulating establishment from the seedbank 
(Forbes et al. 2020). In addition to enrichment using tree 
species, enrichment of other vegetation lifeforms may assist 
restoration goals, such as restoring rongoā (medicinal) 
species, epiphytes (Hall 2020), or threatened non-tree flora. 
Enrichment interventions should be timed and executed 
when the regenerating forest provides suitable structural and 
microclimatic conditions for the enrichment species to thrive. 
Forest restoration planting to thicken sparse native vegetation 
cover can increase a stand’s suitability for enrichment planting. 
Very dense or tall stands of regenerating forest might require 
manipulation of the vegetation structure to reduce competition 
from the existing stand thereby ensuring growth of enrichment 
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Table 1. Location, climate and seed source data underpinning the stepped assessment of restoration mode for six sites across Aotearoa New Zealand (Fig. 2 a–f).
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ref Location Coordinates Capable of Regeneration Rainfall Temperature Seed source Topographic Existing Restoration
  (WGS84) supporting  occurring? (mm year–1)	 (℃)	 (ha;	%	Cover)	 character	 landcover	 mode 
   forest?     (Landforms, slope  provides (Active/  
        aspects, topographic shade and Passive) 
        shelter) shelter? 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

a Grassmere,  41°45’ S 174°07’ W Yes No 556 ± 121 13.5 ± 0.9 45 (<1) Landform  No Active 
 Marlborough       homogenous, NW  
        aspect, little shelter 

b Culverden, 42°43’ S 172°50 W Yes No 609 ± 115 11.4 ± 0.3 0 (<1) Landform  No Active 
 Canterbury       homogenous, NW  
        aspect, little shelter 

c Black  45°43’ S 169°03’ W Yes Yes c. 1100 c. 7.5 1400 (18) Diverse range of Yes Active 
 Umbrella       landforms, aspects 
 Range, Otago       and levels of shelter 

d Matahorua,  39°08’ S 176°55’ W Yes Yes c. 1250 c. 13.5 175 (2) Landform Yes Passive 
 Hawke’s Bay       homogenous, SE  
        aspect, moderate shelter 

e Matiere,  38°46’ S 175°07’ W Yes Yes c. 1450 c. 12.5 2020(26) Diversity of Yes Passive 
 Manawatu-       landforms, aspects 
 Whanganui       and shelter 

f Kiwinui,  37°42’ S 178°20’ W Yes Yes c. 1900 c. 14.5 4304 (55) Moderate variably Yes Passive 
 Tairāwhiti       of landforms and aspects,  
        little shelter 
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Notes: Mean annual temperature and rainfall records represent: (a) temperature = 17 years over 1983–2008 and rainfall = 11 years over 1984–2003 at the Grassmere Salt Works; (b) temperature = 17 
years over 1984–2008 and rainfall = 11 years over 1983–2004 at the Culverden climate station; (c–f) statistics inferred from NIWA’s modelled climate surfaces (Chappell 2013, 2015, 2016).
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Figure 3. Examples of appropriate management interventions 
required to support forest establishment in three circumstances 
along a gradient from active to passive. (a) Pasture grassland 
containing high levels of cover of the aggressive exotic kikuyu 
grass (Cenchrus clandes). Key management interventions are to 
retire domestic grazing animals, clear exotic grass at planting sites 
to reduce competition, and plant seedlings of early successional 
species to outcompete exotic grasses and create microsites where 
seedlings can establish from natural seed rain (b) Hill country with a 
history of both prolific kānuka (Kunzea ericoides) regeneration and 
herbicide applied to maintain pasture grassland. Key management 
interventions are to exclude stock and eradicate feral ungulates 
and possums, enrich the regeneration with representative species 
which are missing from the surrounding secondary forests, 
protect the regenerating forest by ceasing herbicide application, 
protect surrounding forests as future seed sources, and remove 
weed sources from the surrounding landscape. (c) Land cleared 
of an exotic conifer plantation and retired for conservation. Key 
management interventions are to remove competing wilding 
conifer regeneration and protect regeneration by eradicating feral 
ungulates and possums.

species (Tulod & Norton 2020). Enrichment provides a means 
of accelerating aspects of forest development and is particularly 
important in contexts where regeneration is homogenous or 
where natural seed sources are scarce, are missing target species, 
or where pollination or dispersal functions are impaired meaning 
natural establishment is limited. Enrichment treatments are well 
suited to passive restoration in so far as enrichment species can 
be introduced into forest contexts where their future natural 
spread is plausible. There are potential risks associated with 
enrichment planting, especially when conducted at landscape 
scales. Such risks include introduction of genetic material from 
maladapted local ecotypes, propagation and spread of disease 
via nursery stock, and inappropriate species choice affecting 
natural species distributions (Forbes et al. 2020).

Competition treatments are interventions which aim to 
optimise the availability of light for growth of planted seedlings 
to promote their recruitment to higher forest tiers. Interventions 
can focus on creating small-scale canopy gaps (McAlpine & 
Drake 2003; Forbes 2017) or on addressing competition from 
excessive weed growth (McAlpine et al. 2018). Management 
should aim where possible to eliminate shade tolerant or 
structurally dominant weed species, particularly in the early 
stages of invasion when control is more achievable (Harris et al. 
2001). Competition treatments are most likely to be needed 
when planting into dense stands where light transmission to 
the forest understorey is strongly limited by heavy shade.

Preservation treatments (i.e. treatments that support 
regeneration through preservation of existing processes 
or attributes) aim to protect regeneration and successional 
processes from biotic (e.g. excessive herbivory or weed 
competition) and abiotic (e.g. wildfire) threats and preserve 
existing ecosystem attributes which support regeneration 
processes (e.g. legal protection and management of adjacent 
forest seed sources; carnivorous predator control to build and 
maintain avian pollinator and disperser communities; Kelly 
et al. 2010). Specifically, domestic stock should be excluded 
from regenerating forests and feral mammalian pests (e.g. 
ungulates, possums, pigs, rabbits and hares) should be excluded 
by fencing or at larger scales by culling feral populations. 
Threats to regeneration need to be addressed early in the project 
and often these interventions must be ongoing, as without an 
adequate level of ongoing management, threats can seriously 
limit forest restoration outcomes irrespective of the climate 
and seed source contexts.

Scaling-up regeneration
Scaling-up regeneration requires a strategic approach where 
various avenues of advice and support are stacked for 
landowners in geographical areas where regeneration is most 
likely (i.e. regeneration zones). Rainfall and temperature 
gradients indicate broad regions of ANZ which are most 
amenable to restoration by passive means (Mason et al. 2013). 
These broad regions will contain existing examples and 
evidence of regeneration (e.g. Fig. 2d–f) and this approach 
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allows a focus on multiple large-scale regeneration projects 
aggregated in favourable climate contexts.

Within regeneration zones, ecological threats need to 
be identified and addressed (e.g. mammalian browsers or 
serious plant pests) at landscape scales in a collaborative and 
coordinated manner which alleviates the burden of addressing 
threats on any one landowner. This coordinated and landscape 
scale approach would remove barriers that an individual 
landowner faces when having to address landscape scale 
threats at a farm or site scale in isolation from the surrounding 
landscape. Community-led catchment care groups located 
in regeneration zones should be developed and resourced 
to support and connect landowners with their regeneration 
project and to cultivate a community culture supportive of 
forest regeneration and associated management interventions 
(e.g. landscape-scale ungulate control; Maseyk et al. 2021).

Central government can make significant steps towards 
achieving their emissions budgets (under the Climate Change 
Response Act 2002) through financial incentives (e.g. grants 
schemes, rates relief working with local government) for 
marginal land retirement and regeneration projects in the 
regeneration zones. Financial support should be structured 
to fund native forest enrichment, competition, preservation 
treatments, and fencing where required. Region-specific 
economic analyses of income streams (e.g. carbon sinks, native 
timber markets, medicinal, cultural products, ecotourism) and 
costs of land use changes from agriculture on marginal land to 
native forestry need to be available to landowners (Walsh et al. 
2017; Lambie et al. 2021). In addition to adequate financial 
support, landowners might be motivated by a wide array of 
advantages from environmental (e.g. protecting flora and fauna, 
managing the environment, water quality), economic (e.g. farm 
value), social (e.g. intergenerational equity, feel-good factor, 
aesthetics), and practical on-farm management (e.g. animal 
wellbeing, land use change) perspectives (Maseyk et al. 2021). 
Lastly, to assist with technical aspects of their regeneration 
project, landowners require access to free expert independent 
restoration advice (e.g. Restoration Ambassadors/Restoration 
Rangers; Norton et al. 2020).

Conclusions

We describe a process for site-scale assessment of the likelihood 
of natural forest establishment through regeneration processes. 
We frame our assessment in the context and timeframes of 
urgent climate and biodiversity crises and the corresponding 
need to achieve large-scale restoration within several 
decades. On sites that can support forest, and where adequate 
regeneration is not yet occurring, we identify a combination 
of climate and physical factors that landowners can use to 
determine where on a continuum from active-to-passive forest 
establishment sites or parts of sites relate.

Natural regeneration processes will, to differing degrees, 
require management support, such as interventions to enrich 
the diversity of native species, address adverse competition, 
or preserve important processes or attributes which underpin 
regeneration. Scaling-up regeneration requires a strategic 
approach which focuses forest management and support 
in geographical regions which are environmentally and 
economically amendable to regeneration. This consolidated 
regional approach would focus threat management and financial 
and technical support to land areas where co-ordinated action 
among neighbouring landowners can promote the processes 

necessary for landscape-scale recreation of native forest 
ecosystems.
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