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Abstract: Non-native conifers constitute a significant threat to the ecology and biodiversity of many of 
New Zealand’s native ecosystems and species. From the top down, the potential distributions of non-native 
conifer species are governed by climate suitability, which alongside variables such as the availability of suitable 
habitats and a source of propagules determines whether an area of land will be susceptible to invasion by a given 
species. Here, we undertook a novel study to quantify potential distributions as defined by climate suitability for 
all 55 non-native conifer species in New Zealand using ecological niche modelling. Using current and future 
climate data, we then predicted how climate change may affect the potential distributions of these species. For 
most conifer species currently of concern from a management perspective, the total potential distribution is 
predicted to decline in future climates, with the largest reductions occurring for Pinus contorta. However, the 
climatically suitable land area for species such as Pinus pinaster and Pinus patula is predicted to increase in 
the future, while for species such as Pinus radiata future losses of suitable climate space in the North Island are 
approximately balanced by gains in the South Island. Although there is a great deal of variation at the individual 
species level, the vast majority of New Zealand will have climate suitable for a non-native conifer species both 
now and in the future. While data and methodological limitations associated with ecological niche modelling 
means we are more confident about increases than decreases in potential distributions, our results can be used 
to guide the management of non-native conifers in New Zealand and contribute to invasion risk assessments 
for these species. Our data and methodology can also be used to contribute to invasion risk modelling in other 
areas of these conifer species’ introduced ranges throughout the Southern Hemisphere.

Keywords: alien plant, climate change, convex hull, ecological niche modelling, fundamental niche, invasive 
species, Mahalanobis distance, species distribution modelling, weed, wilding conifers

Introduction

Worldwide, conifer species have been planted extensively 
outside their native ranges for purposes such as forestry, 
erosion control, shelter, and amenity plantings, particularly 
in the Southern Hemisphere (Richardson & Rejmánek 2011; 
Castro-Díez et al. 2019). Consequent naturalisation and 
invasive spread of these species within their introduced ranges 
has had substantial ecological and economic impacts in many 
regions (Nuñez et al. 2017), including negative effects on 
biodiversity values, modification of soil processes and fire 
regimes, and reductions to the productivity of agricultural 
land (Franzese et al. 2017; Nuñez et al. 2017; Taylor et al. 
2017; Peltzer 2018). Consequently, considerable resources are 
invested in the control of non-native conifer invasions globally, 
with Aotearoa New Zealand at the forefront of management of 
these species (Richardson & Higgins 1998; Nuñez et al. 2017).

Within New Zealand, introduced non-native conifers 
underpin commercial forestry, worth around NZ$5 billion 
a year, yet invasion by wilding conifers is arguably one of 

New Zealand’s most serious and intractable weed problems 
(Hulme 2020). Naturalisation and increasing distribution of 
wilding conifers is ongoing, such that wildings have been 
estimated to occupy around 1.8 million ha and could cover 28% 
of New Zealand’s land area by 2050 (MPI 2014; Howell 2016; 
Wyatt 2018). The cost of wildings through impacts on ecological 
communities, ecosystem processes, economy, and cultural 
values is conservatively estimated at NZ$4.6 billion over the 
next 30 years (Wyatt 2018), while land managers, government 
agencies, and communities collectively spending NZ$10s of 
millions each year managing this problem with these costs 
increasing by around 30% per year (MPI 2014). Despite current 
management efforts, the total area invaded has increased by 
approximately 6% per year since management has commenced 
(Howell 2016). As a consequence, a goal for wilding conifer 
invasion to be stopped or contained nationally by 2030 was 
stipulated in the 2015 National Strategy for Wilding Conifer 
Management (MPI 2014). However, the information or data 
needed to understand the potential distribution of wildings 
currently and in the future remains unresolved.
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Less than half of the 28 naturalised conifer species in 
New Zealand (Howell 2019) are thought to be responsible for 
most wilding conifer spread, with Pinus contorta (lodgepole 
pine), Pinus nigra (Corsican pine), Pseudotsuga menziesii 
(Douglas fir), and Larix decidua (European larch) among the 
most commonly managed wilding conifer species (Froude 
2011). However, future threats are likely from additional 
naturalised or casual conifer species present in New Zealand 
(Howell 2019), which should therefore undergo invasive 
species risk assessments. A key component of such risk 
assessments (Andersen et al. 2004) is an estimate of the potential 
distribution of a species (Venette et al. 2010). Although there 
are many abiotic, biotic, and dispersal factors that interact to 
ultimately dictate a species distribution (Soberón & Peterson 
2005), climatic variables represent a top-down limiting factor 
that can predict where conifers could invade (Essl et al. 2011; 
Nuñez & Medley 2011).

Climatic risk assessments can greatly improve our 
understanding of future invasion risks. For example, ecological 
niche modelling (or species distribution modelling) that uses 
known occurrences of species in environmental space, can 
be used to identify the set of environmental conditions under 
which a species can exist currently or in the future (Peterson 
2003). Because climate is an abiotic factor, ecological 
niche modelling is best approached using the fundamental 
niche (Soberón & Peterson 2005), which can be defined 
as an n-dimensional hypervolume that corresponds to the 
environmental conditions in which the species could persist 
indefinitely (Hutchinson 1957). Identifying geographic 
locations that have environmental conditions within the 
fundamental niche enables maps of potential distribution to be 
produced that can help inform invasion risk (Peterson 2003). 
While the fundamental niche of a species is relatively stable 
and will only change slowly through evolutionary processes, 
more rapid processes such as climate change could result in 
geographic locations shifting in or out of the fundamental niche 
(Jackson & Overpeck 2000). Therefore, climate change could 
result in increases or decreases in the potential distributions of 
non-native conifers across New Zealand, leading to changes 
to the risks of invasive spread posed by these species.

Given the relatively large number of non-native conifers 
found in New Zealand coupled with ongoing climate change, 
our objective was to assess invasion risk from the top-down 
perspective of current and future climates. This was done by 
first building ecological niche models for each non-native 
conifer species and then mapping the potential distribution 
of non-native conifers present in New Zealand under current 
and future climatic conditions. We further distinguished non-
native conifer species as either naturalised species with self-
maintaining wild populations or casual species with sporadic 
or non-persistent wild populations (Howell 2019) to reflect 
differences in progression towards invasiveness. Overall, this 
study provides new insights into the current and potential 
future potential distributions of a major group of biological 
invaders across New Zealand.

Methods

Climate data
We used the Climatologies at High resolution for the Earth’s 
Land Surface Areas (CHELSA) bioclimatic BIOCLIM 
variables, as the original BIOCLIM variables have previously 

been demonstrated to be useful for predicting climatically 
suitable areas for tree species (Booth 1985). The data were 
obtained for the 1979–2013 climatic period and have a global 
extent with 30 arc-second (c. 1 km2) resolution (Karger et al. 
2017).

We sought a minimal set of ecologically relevant BIOCLIM 
variables that captured climatic variation in New Zealand, 
as it is critically important to choose explanatory variables 
that have direct ecological relevance (Fourcade et al. 2018) 
and that are uncorrelated (Dormann et al. 2013), especially 
as we are extrapolating our niche models across time and 
climatic space. Also, as we were modelling the fundamental 
niche which describes environmental limits for a species, 
we focussed on frost and drought tolerance as ecologically 
relevant climatic factors that have strong effects on conifer 
seedling mortality in New Zealand (primarily through frost 
heave and subsequent desiccation, and freezing and desiccation 
of sensitive seedling tissues), and hence limit the distributions 
of naturalised conifers in New Zealand (Benecke 1967; 
Ledgard 1979; Wardle 1985; Allen & Lee 1989; Burdon & 
Miller 1992). We used “BIOCLIM6 minimum temperature of 
the coldest month” to capture niche limitations around frost 
tolerance, and both “BIOCLIM9 mean temperature of the driest 
quarter” and “BIOCLIM17 precipitation of the driest quarter” 
in combination to capture niche limitations around drought 
tolerance. We limited our analyses to these three BIOCLIM 
variables as these variables are highly correlated with all other 
potentially ecologically relevant BIOCLIM variables within 
New Zealand (McCarthy et al. 2021), and as such are expected 
to capture most of the climatic variation.

When modelling a species’ future response to climate 
change it is critical to recognise the inherent uncertainty of 
this task, and that careful consideration must be given to 
representing this uncertainty within the modelling (Beaumont 
et al. 2008). We chose to model future conditions for the 
2061–2080 climatic period provided by CHELSA (Karger 
et al. 2017), for which a wide range of possible predictions 
exist based on various combinations of a relative concentration 
pathway (RCP) implemented by a global circulation model 
(GCM). We chose to consider the RCP 2.6, 4.5, 6.0, and 
8.5 scenarios to be equally possible, and have followed the 
Intergovernmental Panel on Climate Change by assuming 
that each GCM is equally valid (Maslin 2014). However, as 
some GCMs use very similar approaches, it is important to 
recognise that by including all available GCMs the results will 
be biased towards approaches that are more commonly applied 
(Knutti et al. 2013). Therefore, of the CHELSA 2061–2080 
GCMs that provided predictions for all four RCPs, we used 
a hierarchical similarity clustering of GCM outputs (Knutti 
et al. 2013) to select 10 GCMs (BCC-CSM1-1, MIROC5, 
GFDL-CM3, MRI-CGCM3, GISS-E2-R, HadGEM2-AO, 
CCSM4, IPSL-CM5A-LR, CSIRO-Mk3-6-0, MIROC-ESM), 
whose predictions were spread across the range of possible 
future conditions and as such should represent a fair reflection 
of future climate uncertainty.

For the purposes of mapping the potential distributions 
in New Zealand, the global climatologies were clipped and 
reprojected to a 1 km2 grid of cells covering the three main 
islands of New Zealand plus nearshore islands. Those 1 km2 grid 
cells that currently consist of ≥ 50% inland water (LINZ 2021) 
were then reclassified as unavailable for conifer distribution. 
The current climate conditions of New Zealand demonstrate that 
there are strong climatic gradients in New Zealand meaning that 
there could be regional variation in the potential distributions 



3Etherington et al.: Future distributions of non-native conifers

of different conifer species (Figs 1 a–c). The future climate 
conditions measured as the median across all four RCPS and 10 
GCMs indicates that the minimum temperature of the coldest 
month will increase modestly across New Zealand (Fig. 1d), 
the mean temperature of the driest quarter will mostly increase 
across New Zealand including some very significant localised 
increases (Fig. 1e), and the precipitation of the driest quarter 
across New Zealand could increase as much as decrease but 
that these changes could be locally significant (Fig. 1f).

Figure 1. Current climate conditions and associated future climate change in New Zealand. Current conditions for the period 1979-2013 
are shown for (a) BIOCLIM6, minimum temperature of the coldest month, (b) BIOCLIM9, mean temperature of the driest quarter, 
and (c) BIOCLIM17, precipitation of the driest quarter. Future climate change is for the period 2061–2080 and is shown as the median 
change across the four relative concentration pathways and 10 global circulation models used in the analysis for (d) BIOCLIM6, (e) 
BIOCLIM9, and (f) BIOCLIM17.

Species data
We focussed our study on 28 naturalised (Table 1) and 27 casual 
(Table 2) non-native conifer species in New Zealand (Howell 
2019). For each species, we obtained global occurrence data 
from the Global Biodiversity Information Facility (GBIF) 
(Edwards et al. 2000), limiting the data obtained to occurrences 
recorded as having reliable geographic locations. The use 
of global occurrence data, as opposed to data solely from 
New Zealand, is critically important for a climate change study, 
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as it maximises the chance of including climatic conditions that 
do not currently exist in New Zealand but may in the future 
(Peterson et al. 2011; Atwater et al. 2018).

Because the natural history data that forms the backbone of 
GBIF will have errors and contain sampling bias (Graham et al. 
2004), we followed existing advice (Zizka et al. 2020; Sillero 
& Barbosa 2021) and cleaned the GBIF occurrences in the 
following manner to minimise potential errors and to maximise 
suitability to our question. To be temporally consistent with 
the climatologies, while also trying to maximise sample size, 
we limited occurrences to those from 1970 onwards. To be 
spatially consistent with the climatologies, only occurrences 
with a known spatial uncertainty ≤ 1 km and with supporting 
coordinate precision were included. Occurrences were also 
removed if they were not located in the country in which 
they were recorded, or if they fell in a global climatology 
grid cell with no data. Having extracted the climatic data for 
each remaining occurrence, to minimise sampling bias in 
climatic space, an environmental filter was applied (Varela 
et al. 2014) to ensure that occurrences were at least 1°C apart 
on the minimum temperature of the coldest month and the 
mean temperature of the driest quarter axes, and 25 mm apart 
on the precipitation of the driest quarter axis.

Ecological niche modelling
Recognition of the inevitable uncertainties in both estimating 
the fundamental niche of a species, and with projecting the 

Table 1. Summary information for naturalised non-native conifer species analysed within this study. The 28 naturalised 
species are listed by their percentage point gain or loss of potential distribution areas for New Zealand. The potential 
distribution area as a percentage of New Zealand is given for the 1979–2013 and 2061–2080 the climatic periods, along 
with the number of clean GBIF global species occurrences used to build the ecological niche models, and the number of 
those global occurrences that were from New Zealand.
__________________________________________________________________________________________________________________________________________________________________

Species Percentage  1979–2013 2061–2080 n n 
 point change potential area potential area (Global) (New Zealand) 
  (%) (%) 
__________________________________________________________________________________________________________________________________________________________________

Araucaria heterophylla +7.8 36.7 44.5 160 18
Cupressus lusitanica +7.4 40.1 47.5 130 3
Pinus patula +5.4 9.0 14.4 116 4
Callitris rhomboidea +5.2 17.7 22.9 258 2
Pinus pinaster +3.1 51.6 54.7 488 11
Cryptomeria japonica +2.9 79.2 82.1 323 23
Cupressus macrocarpa +1.6 42.3 43.9 293 51
Cupressus sempervirens +1.2 50.2 51.4 527 0
Pinus halepensis +1.2 23.8 25.0 494 1
Pinus radiata +1.2 67.1 68.3 754 141
Pinus muricata −0.3 5.9 5.6 45 10
Pinus taeda −0.6 38.8 38.2 288 1
Pinus banksiana −1.6 4.1 2.5 329 0
Pinus ponderosa −2.0 11.9 9.9 632 5
Pinus monticola −2.3 12.3 10.0 271 0
Abies nordmanniana −2.9 21.0 18.1 165 0
Abies grandis −3.9 24.9 21.0 458 2
Sequoia sempervirens −4.2 28.6 24.4 179 6
Pinus mugo −4.7 18.1 13.4 505 6
Pinus strobus −5.3 22.6 17.3 1242 1
Picea sitchensis −6.9 48.9 42.0 848 0
Pinus sylvestris −7.0 46.9 39.9 1886 3
Larix decidua −7.1 33.5 26.4 1207 11
Pinus nigra −7.1 59.2 52.1 652 16
Pseudotsuga menziesii −7.2 67.8 60.6 1511 75
Pinus contorta −7.9 45.0 37.1 1097 35
Taxus baccata −8.0 56.6 48.6 1493 22
Picea abies −8.1 56.9 48.8 1788 0
__________________________________________________________________________________________________________________________________________________________________

niche into the future, is critically important for invasive 
species risk mapping (Venette et al. 2010). Blonder (2018) 
suggests bootstrapping (Efron 1979; Diaconis & Efron 1983) 
as a possible method to obtain a confidence, or conversely 
uncertainty, estimate for niche models, and we have adopted 
this approach as bootstrapping has been shown to work well 
in similar modelling contexts (Verbyla & Litvaitis 1989; 
Etherington & Lieske 2019). We therefore repeated the 
modelling process for each species for 500 bootstrapped 
samples, with the result being the mean of the 500 bootstrap 
models.

We chose a presence-only ecological niche modelling 
framework, as we had neither absence data nor the ability to 
reliably define a relevant background area, which ideally would 
require us to know the area surveyed and the area available 
to each species, both of which are unknown. We selected the 
convex hull approach (Walker & Cocks 1991) to model the 
fundamental niche for each non-native conifer species as it 
has several properties which lend itself to this application. 
Namely, convex hulls require only presence data, do not 
require the specification of any model fitting parameters, and 
only assume that a niche is convex in shape (Blonder 2018). 
This latter assumption is of particular importance as it aligns 
with the shape of the niche we are modelling at a conceptual 
level (Hutchinson 1957).

Convex hulls are sensitive to outliers and can produce 
misleadingly large niche estimates (Blonder 2018). Therefore, 
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Table 2. Summary information for casual non-native conifer species analysed within this study. The 27 casual species are 
listed by their percentage point gain or loss of potential distribution areas for New Zealand. The potential distribution area 
as a percentage of New Zealand is given for the 1979–2013 and 2061–2080 the climatic periods, along with the number of 
clean GBIF global species occurrences used to build the ecological niche models, and the number of those global occurrences 
that were from New Zealand.
__________________________________________________________________________________________________________________________________________________________________

Species Percentage  1979–2013 2061–2080 n n 
 point change potential area potential area (Global) (New Zealand) 
  (%) (%) 
__________________________________________________________________________________________________________________________________________________________________

Araucaria bidwillii +5.5 14.7 20.2 107 1
Pinus elliotii +2.8 18.4 21.2 151 0
Podocarpus elatus +1.8 3.1 4.9 138 0
Afrocarpus falcatus +1.7 1.8 3.5 106 2
Pinus pinea +1.1 21.8 22.9 333 1
Callitris oblonga +0.7 2.4 3.1 45 0
Cupressus arizonica +0.4 29.1 29.5 174 3
Pinus canariensis +0.3 0.4 0.7 101 0
Pinus coulteri 0.0 0.0 0.0 97 0
Abies pinsapo −0.1 1.8 1.7 45 1
Cedrus atlantica −0.9 19.8 18.9 179 0
Pinus wallichiana −1.5 11.1 9.6 58 0
Chamaecyparis pisifera −1.7 8.7 7.0 56 1
Cedrus deodara −1.8 37.2 35.4 203 0
Juniperus virginiana −2.0 64.2 62.2 912 0
Pinus uncinata −2.5 7.9 5.4 101 0
Larix kaempferi −3.8 20.0 16.2 310 0
Chamaecyparis lawsoniana −5.7 50.9 45.2 443 21
Juniperus communis −6.2 58.0 51.8 3051 2
Thuja occidentalis −6.2 28.3 22.1 780 0
Tsuga heterophylla −6.7 38.5 31.8 777 1
Thuja plicata −7.0 53.7 46.7 742 2
Abies alba −7.8 39.6 31.8 820 0
Cunninghamia lanceolata - - - 41 1
Pinus thunbergii - - - 35 0
Podocarpus elongatus - - - 19 0
Podocarpus macrophyllus - - - 42 1
__________________________________________________________________________________________________________________________________________________________________

we used the Mahalanobis distance (Mahalanobis 1936) statistic 
to identify outliers. After each bootstrap sample was generated, 
we calculated the probability that each occurrence in the 
bootstrap sample was an outlier (Etherington 2019) using a 
minimum covariance determinant approach (with k = 0.95); an 
approach that has been demonstrated to be robust to sample size, 
error, and bias (Etherington 2021). Precipitation values were 
log-transformed and all variables were converted to z-scores 
(Gregory 1978) for the Mahalanobis distance calculations to 
help ensure the assumption of multi-variate normality was 
appropriate, and to aid visualisation. Occurrences were then 
eliminated if their Mahalanobis distance probability was  
> 0.99 (Fig. 2).

The fundamental niche was then defined using a convex 
hull constructed around the remaining occurrences. Using the 
convex hull, the climatic suitability of any current or future 
location in New Zealand could be assessed by determining 
if the climate at that location and time fell within the convex 
hull (suitable), or outside the convex hull (not suitable). For 
each bootstrap sample, one of the 40 possible futures formed 
by the ten future climate GCMs under the four RCPs was 
chosen at random to explore possible futures.

Predictions were made for the New Zealand 1 km2 
resolution climate grids, and when the mean of all bootstrap 
samples was taken, this resulted in potential distribution maps 
on a scale from 0 (never climatically suitable) to 1 (always 
climatically suitable) with values in between representing 

the degree of uncertainty, and 0.5 representing maximum 
uncertainty. As well as producing current and future potential 
distribution maps, the difference between these two maps was 
calculated to show the spatial pattern of any changes in potential 
distribution. To collectively examine the potential distribution 
of those conifers currently of regional concern, for both time 
periods we also calculated the maximum potential conifer 
distribution across all 13 conifer species listed on regional 
pest management plans: Larix decidua, Pinus contorta, Pinus 
monticola, Pinus mugo, Pinus muricata, Pinus nigra, Pinus 
patula, Pinus pinaster, Pinus ponderosa, Pinus radiata, Pinus 
sylvestris, Pinus uncinata, Pseudotsuga menziesii. The value 
of each grid cell in the maps resulting from this analysis was 
the maximum suitability score (from 0–1) of the corresponding 
grid cells from the individual species maps. The difference 
between these two maps was calculated to examine changes 
in potential distribution for any non-native conifer of regional 
concern.

For all 55 non-native conifer species, national scale 
summaries of the potential distribution area were calculated 
for the 1979–2013 and 2061–2080 time periods. To incorporate 
the modelling uncertainty, the potential distribution area was 
calculated as the sum of the area of each grid cell multiplied 
by the uncertainty of each grid cell. The potential distribution 
area was then expressed as a percentage of the total area of 
New Zealand, defined by the number of 1 km2 grid cells of 
mainland New Zealand plus nearshore islands. Changes in 
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Figure 2. Example of convex hull fundamental niche modelling with Mahalanobis distance outlier detection. The points represent global 
occurrences of Pinus radiata in three-dimensional climate space formed by: minimum temperature of the coldest month (BIOCLIM6), 
mean temperature of the driest quarter (BIOCLIM9), and precipitation of the driest quarter (BIOCLIM17). Precipitation values were 
log-transformed and all variables were converted to z-scores. The elliptical shape shows the Mahalanobis distance threshold used to 
detect outliers, and the polyhedral shape is the convex hull around the remaining non-outlier points that defines the climatic fundamental 
niche of Pinus radiata.

potential distribution areas between time periods were then 
calculated as a percentage point change (for example, a change 
from 68% to 70% is a +2 percentage point change).

All analyses were undertaken using R version 3.5.3 (R 
Core Team 2019) using functionality from the MASS version 
7.3-51.1 (Venables & Ripley 2002), rgbif version 1.3.0 
(Chamberlain & Boettiger 2017), sf version 0.7-6 (Pebesma 
2018), raster version 2.9-5 (Hijmans 2019), rgl version 0.100.30 
(Adler & Murdoch 2019), rnaturalearth version 0.1.0 (South 
2017), and compGeometeR version 1.0 (Barber et al. 1996; 
Etherington & Omondiagbe 2021) packages.

Results

All 55 non-native conifer species were identified within GBIF 
with a ≥ 97% taxonomic confidence. After error cleaning and 
bias filtering the data from the resulting download (GBIF.
org 2021), a median of 491 (range 45–1886) occurrences for 
each naturalised species (Table 1) and 138 (range 19–3051) 
occurrences for each casual species (Table 2) were used for 
the niche modelling. Models built with very small sample 
sizes are unlikely to be reliable, and thus we chose to limit 
our ecological niche modelling to those species with ≥ 45 
occurrences, which enabled all 28 naturalised species and 23 
of the 27 casual species to be analysed.

When aggregated at a national scale, the potential 
distribution areas were often very large. For naturalised 
species, the median potential distribution area was 37.8% 
(range 4.1–79.2%) for the period 1979–2013 and 37.7% (range 
2.5–82.1%) for the period 2061–2080 (Table 1). In contrast, 

the potential distribution areas for the casual species were 
smaller, with a median potential distribution area of 19.8% 
(range 0–64.2%) for the period 1979–2013 and 20.2% (range 
0–62.2%) for the period 2061–2080 (Table 2).

When aggregated at a national scale the changes in potential 
distribution area for each species were generally quite small and 
were similar between naturalised (percentage points: median 
−2.2, range −8.1–+7.8) and casual (percentage points: median 
−1.5, range −7.8–+5.5) species (Tables 1 and 2). In contrast, 
the spatial patterns of changes in potential distribution within 
New Zealand varied markedly among species. For example, 
while Pinus radiata (radiata pine) was predicted to have a 
small increase in potential distribution at the national scale, this 
resulted from losses in northern New Zealand being balanced 
by gains in southern New Zealand (Fig. 3). This contrasts with 
other species such as Araucaria heterophylla (Norfolk Island 
pine) that had consistent gains across New Zealand (Fig. 4) or 
Pinus mugo (dwarf mountain pine) that had consistent losses 
across New Zealand (Fig. 5). 

When considering the naturalised conifers most 
problematic from a management perspective in terms of their 
capacity to spread (Larix decidua, Pinus contorta, Pinus mugo, 
Pinus muricata, Pinus nigra, Pinus pinaster, Pinus ponderosa, 
Pinus radiata, Pinus sylvestris, and Pseudotsuga menziesii; 
Froude 2011), most species (8 of 10) showed an average 
reduction in the potential climatically suitable land area within 
New Zealand (Table 1). Of these species, the largest decrease 
in suitable area is predicted for P. contorta (−7.9 percentage 
points; Fig. 6), and the largest increase in suitable area is 
predicted for P. pinaster (+3.1 percentage points; Fig. 7). The 
species highlighted in these examples (Figs 3–8) represent 
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Figure 3. Potential distribution maps of Pinus radiata from a climate perspective. The potential distributions maps show climatic 
suitability on a scale from 0 to 1 for (a) the period 1979–2013 and (b) the period 2061–2080, with (c) showing the change in suitability 
between the two periods.

Figure 4. Potential distribution maps of Araucaria heterophylla from a climate perspective. The potential distributions maps show 
climatic suitability on a scale from 0 to 1 for (a) the period 1979–2013 and (b) the period 2061–2080, with (c) showing the change in 
suitability between the two periods.
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Figure 5. Potential distribution maps of Pinus mugo from a climate perspective. The potential distributions maps show climatic suitability 
on a scale from 0 to 1 for (a) the period 1979–2013 and (b) the period 2061–2080, with (c) showing the change in suitability between 
the two periods.

Figure 6. Potential distribution maps of Pinus contorta from a climate perspective. The potential distributions maps show climatic 
suitability on a scale from 0 to 1 for (a) the period 1979–2013 and (b) the period 2061–2080, with (c) showing the change in suitability 
between the two periods.
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Figure 7. Potential distribution maps of Pinus pinaster from a climate perspective. The potential distributions maps show climatic 
suitability on a scale from 0 to 1 for (a) the period 1979–2013 and (b) the period 2061–2080, with (c) showing the change in suitability 
between the two periods.

Figure 8. Potential distribution maps of Pinus patula from a climate perspective. The potential distributions maps show climatic suitability 
on a scale from 0 to 1 for (a) the period 1979–2013 and (b) the period 2061–2080, with (c) showing the change in suitability between 
the two periods.
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species that were exemplars of spatial patterns or extremes of 
overall change. For those interested in other species, maps for 
all species are provided openly in the supplementary materials 
alongside the associated data and code.

Regarding the combined risk from any of the non-native 
conifers of regional concern, the majority of New Zealand is 
climatically suitable for at least one species of conifer listed 
on the 16 regional pest management plans, both now (Fig. 
9a) and in the future (Fig. 9b). There are some reasonably 
widespread slight decreases in climate suitability in the northern 
parts of the country, and some localised but more significant 
increases in climate suitability in the southern parts of the 
country (Fig. 9c).

Discussion

From a climate perspective the vast majority of New Zealand 
is currently suitable for at least one conifer species, including 
those of particular concern, demonstrating that the issue of 
wilding conifers is of national importance. The potential 
distribution of many non-native conifers is relatively large, 
meaning that climate is unlikely to be a limiting factor for 
the invasion of many species. Known wilding species such as 
Pinus nigra and Pseudotsuga menziesii (Howell 2008) have 
potential distributions that cover over half of New Zealand, 
which supports ongoing control efforts to prevent their even 
wider spread. There are also casual species such as Juniperus 
spp. that have similarly large potential distributions, indicating 

Figure 9. Maps of maximum potential distribution across all conifer species listed on New Zealand regional pest management plans (Larix 
decidua, Pinus contorta, Pinus monticola, Pinus mugo, Pinus muricata, Pinus nigra, Pinus patula, Pinus pinaster, Pinus ponderosa, 
Pinus radiata, Pinus sylvestris, Pinus uncinata, Pseudotsuga menziesii). The potential distribution maps show the maximum climatic 
suitability across all species on a scale from 0 to 1 for (a) the period 1979–2013 and (b) the period 2061–2080, with (c) showing the 
change in suitability between the two periods.

that these species have the capacity to become very widely 
distributed. Species risk assessments for casual species should 
therefore recognise that while some non-native conifers may 
currently have comparatively localised distributions, those 
conifers with larger potential distributions could pose a 
significant future risk.

Looking to the future, it seems that the effects of climate 
change are more likely to shift the spatial arrangement of non-
native conifer potential distributions, rather than eliminating 
any species. For example, climatic conditions for Pinus radiata 
are projected to become less suitable in northern regions 
and more suitable in southern and upland regions (Fig. 3), 
a pattern that likely a result of warming temperatures and is 
consistent with results from ecophysiological models (Watt 
et al. 2019). Even those species such as Pinus contorta that 
had more significant reductions in their potential distributions 
still retain large areas that are climatically suitable (Fig. 6). 
Therefore, the effects of climate change on non-native conifer 
distributions are most likely relevant at more regional scales 
where there is the possibility that some regions may become 
climatically suitable for some species, or unsuitable for others. 
This underlines the importance of regional decision making in 
the management of non-native conifers as priorities are likely to 
vary among regions. To support this regional decision making 
we are openly sharing maps and data to allow for regional 
assessments. We would also encourage regional authorities to 
share knowledge on their respective weeds and weed control 
efforts, as a current weed in one region may be a future weed 
for another. For example, Pinus patula is currently listed 
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on the regional pest management strategy for Marlborough 
only (Wyse & Hulme 2021b) but our models suggest that in 
the future the climatically suitable area for this species may 
expand into other regions such as Canterbury and Otago 
(Fig. 8). Because management is most effective at the earliest 
stages of invasion, knowledge of which weed species could 
occur in the future should be used to target species for early 
eradication or to prevent future invasion at the regional scale. 
We conclude that while the climatic suitability for individual 
conifer species may increase or decrease locally, the vast 
majority of New Zealand could be at risk from at least one 
wildling conifer species both now and in the future.

It is critical to reinforce that our analyses represent 
minimum estimates of the climatically suitable conditions. 
A fundamental limitation to ecological niche modelling of 
invasive species is data availability (Peterson 2003), and the 
predictions for those species with minimal data (Tables 1 and 
2) should be treated with greater caution. A good example of 
this issue is Pinus coulteri that only had 97 occurrences after 
our data cleaning process, none of which were in New Zealand, 
and as such was predicted to have no suitable climates in 
New Zealand. But this prediction is clearly incorrect as  
P. coulteri is known to have naturalised in two ecological 
regions of New Zealand (Howell 2019). Much of the available 
species data was lost as it did not record location uncertainty, 
but to get reliable results from ecological niche modelling it 
is absolutely critical to use occurrence data that are known 
to match the resolution of the climatic variables (Sillero & 
Barbosa 2021). To improve these kinds of models we therefore 
need to increase the amount of occurrence data available for 
non-native conifers that are located with sufficient precision 
and have recorded the location uncertainty in their metadata. 
This could be done either by collecting new data, or by updating 
the metadata of existing data. Another major source of species 
data loss was from environmental filtering to remove bias from 
areas of climate space that were oversampled. Given there were 
often minimal occurrence data from New Zealand (Tables 1 and 
2), it would be extremely beneficial for additional data to be 
collected. Additional occurrence data that is targeted towards 
any areas currently predicted as being outside a potential 
distribution would be particularly valuable as these data would 
occur in under-sampled parts of New Zealand’s climatic space 
where additional data would better describe the full extent of 
a species’ fundamental niche and potential distribution. The 
additional figures and potential distribution data for all species 
provided alongside this research could support such targeted 
data collection. Finally, despite some high-quality occurrences 
in certain New Zealand locations, the model may not classify 
the location as suitable as these rare occurrences in climatic 
space are classified as outliers in relation to more abundant data 
for other parts of climatic space. For example, an occurrence 
of P. patula has been reliably recorded from near Rotorua, but 
being rare and climatically distant from other occurrences it 
is classified as an outlier, so in our model this region is not 
currently considered climatically suitable (Fig. 8).

This issue of data availability for ecological niche 
modelling is exacerbated in the context of invasive species risk 
assessments. It is extremely common for invasive species to 
occupy climatic conditions in their introduced range that are 
not present in their native range, meaning that ecological niche 
modelling using data only from the native range is likely to 
underpredict the fundamental niche and potential distribution 
of an invasive species (Atwater et al. 2018; Perret et al. 
2019). Not relying on occurrence data from the native range 

reinforces the need to collect non-native conifer occurrence 
data in New Zealand and elsewhere in the introduced ranges, 
as we cannot depend on occurrences in a species’ native range 
to provide a reliable prediction of the potential distribution 
in the introduced range. The data availability issue is further 
exacerbated in the context of climate change, as future climate 
conditions may be novel, with no present-day climate analogue. 
As a result, it is currently impossible to collect data that would 
confirm if novel future climates will be within a species’ 
fundamental niche (Peterson et al. 2011).

The general issue of data availability for ecological niche 
modelling, combined with the invasive species and climate 
change contexts of this research, reinforces that our predictions 
are best interpreted as minimum estimates of the climatically 
suitable conditions. While we feel confident that those areas 
expected to be climatically suitable now and in the future are 
indeed likely to be suitable, it is quite possible that currently 
unsuitable climates or apparent losses of climate suitability 
are a result of data limitations rather than ecological processes. 
In addition, although we have considered climate as the only 
top-down limiting factor of invasion risk, we recognise that this 
risk will also be affected by other abiotic, biotic, and dispersal 
processes that will ultimately dictate the invasion risk of these 
conifer species (Allen & Lee 1989; Essl et al. 2011; Nuñez 
& Medley 2011; Wyse et al. 2019; Wyse & Hulme 2021b).

For instance, while our models are appropriate for national 
and regional scale assessment, at the finer scales at which 
individual trees operate abiotic factors such as microclimate 
(Lembrechts et al. 2019) would be expected to refine our 
models by representing highly localised effects of topography 
on temperature and moisture gradients (Bennie et al. 2008; 
Kopecký et al. 2021). Other abiotic factors relating to soil 
geochemistry and drainage have also been shown to be 
important for explaining plant distributions (Buri et al. 2020).

The addition of biotic interactions adds an additional layer 
of complexity, but will be necessary to improve ecological 
niche models (Anderson 2017). The suitability of the available 
habitat, in terms of the land use practices and plant community 
composition, are critical for determining the likelihood that 
a conifer seedling will be able to successfully establish at a 
site. Community composition and grazing pressure are both 
crucial for determining the establishment success of non-native 
conifers, as high grazing pressure reduces the likelihood 
of seedling establishment (Ledgard 1994), while conifer 
establishment success generally decreases with increasing 
vegetation cover (Ledgard 2001; Lloyd et al. 2016). However, 
of the dominant wilding conifers, Pseudotsuga menziesii is 
the most shade tolerant and can also invade native forest 
(Lloyd et al. 2016). Further, the successful establishment of 
these conifer species is dependent on the presence of suitable 
mycorrhizal fungi (Dickie et al. 2010), although such species 
are becoming reasonably ubiquitous in most areas, with their 
spread facilitated by non-native herbivore species such as the 
European red deer (Cervus elaphus) and the Australian brushtail 
possum (Trichosurus vulpecula) (Wood et al. 2015). It is also 
worth noting that where there is simultaneous invasion from 
multiple non-native conifers there will also be competitive and 
mutualistic biotic interactions between non-native conifers will 
add an additional layer of complexity to the invasion process.

As many of the naturalised and casual conifer species 
currently have quite limited distributions, each occurring in 
just a few of New Zealand’s ecological regions (Howell 2019), 
a final intrinsic component of a species’ invasion risk profile 
is its dispersal ability. The conifer species that represent the 
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greatest concern for management are all wind-dispersed, where 
the tallest species and those with the lowest seed terminal 
velocities (typically species with the smallest seeds) have the 
greatest dispersal potentials (Wyse & Hulme 2021a, 2021b). For 
such species, the species’ dispersal abilities have been shown to 
strongly predict their historic spread rates within New Zealand 
(Wyse & Hulme 2021b). In addition, human-mediated 
processes may also act as important dispersal pathways for 
the species (Auffret et al. 2014), with forestry planting effort 
in particular likely to facilitate spread and the likelihood that 
a species will become naturalised (McGregor et al. 2012). 
The inclusion of conifer species in major afforestation efforts 
across New Zealand such as the Billion Trees Initiative, might 
inadvertently facilitate additional naturalisation or spread of 
these species by increasing future propagule pressure.

Finally, a full risk assessment must also consider aspects 
beyond potential distribution, such as the severity of the 
ecological impacts of the species (Andersen et al. 2004), but 
we hope that our minimum potential distribution maps can 
form part of a fuller risk assessment that contributes to our 
understanding and management of the issue of wilding confers. 
For example, current management practice of removing 
wildings at scale is largely driven by the failure of past efforts 
to contain or slow their increased distribution and abundance 
(Froude 2011). But our estimates of current and future potential 
distributions could support a more proactive approach to 
landscape-scale management of invasive trees through regional 
predictions of changes in the climatic suitability for invaders. 
Our findings also support the general call for including 
detection and monitoring of invasive populations, and more 
specifically, how niche-based sampling frameworks could be 
deployed to detect predicted changes in future distributions, thus 
increasing management efficiency through early intervention 
(Panetta 2007; Wilson et al. 2014). More generally, improved 
understanding and management of landscape-scale invaders 
necessitates linking management to research (Funk et al. 2020), 
and the large-scale long-term control of wilding conifers is a 
globally important example of how such linkages can be made 
(Nuñez et al. 2017). To that end all the data and code underlying 
our analyses have been made openly available such that where 
useful they can form part of more complex localised risk 
assessments. For example, in the future any national strategy 
for the control of non-native conifers could include a more 
regional perspective on prioritising species control that better 
recognises regional differences in potential distributions, and 
a longer-term perspective that includes potential distributional 
shifts due to climate change.
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