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Abstract: The	size	and	shape	of	the	managed	area	for	a	threatened	species	to	have	a	stable	or	growing	population	is	a	
central	issue	for	conservation	management,	for	example	for	kiwi,	Apteryx sp. Combining	geometric	probability	results	
for	retention	of	juveniles	to	breed	in	the	protected	area	with	a	standard	matrix	population	model	allows	the	creation	of	
an	explicit	relationship	between	the	minimum	area	needed	and	how	far	juveniles	of	the	species	disperse	to	establish	
breeding	territories.	For	a	given	set	of	demographic	parameters	for	the	population,	and	a	rectangular	protected	area,	
there	is	a	quadratic	relationship	between	area	and	dispersal	distance.	Extensions	for	a	circular	protected	area,	and	
for	a	probability	distribution	on	dispersal	distance,	are	considered.	The	results	are	applied	to	kiwi,	using	established	
population	parameters,	giving	results	that	match	closely	those	from	a	previously	published	simulation.	This	approach	
can	provide	simple	tools,	readily	implemented	in	a	spreadsheet,	for	assessment	of	the	size	and	shape	of	protected	areas	
needed	in	conservation	management	of	animals	that	disperse	before	breeding.___________________________________________________________________________________________________________________________________
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Introduction
The	 size	 and	 shape	 of	 a	 managed	 area	 that	 allows	 a	
threatened	species	to	have	a	stable	or	growing	population	
is	a	central	issue	for	conservation	management.	In	many	
species,	juveniles	disperse	from	their	natal	areas	before	
breeding.	How	big	a	managed	area	is	necessary	to	allow	
sufficient recruitment from new generations after dispersal 
to	reverse	population	decline?	For	example,	the	question	
arises	of	how	large	an	area	of	stoat	trapping	is	needed	to	
allow	the	recovery	of	local	populations	of	New	Zealand’s	
national	icon,	the	kiwi.

Methods	for	determining	the	minimum	population	
and	 area	 to	 allow	 species	 conservation	 were	 reviewed	
by	 Shaffer	 (1981).	 Of	 the	 five	 methods	 described	
(experiments,	biogeographic	patterns,	theoretical	models,	
simulation	 models,	 and	 genetic	 approaches),	 the	 two	
modelling	 methods	 have	 potential	 for	 addressing	 the	
impact	of	dispersal	on	the	size	of	managed	areas	needed.	
Simulation	has	been	the	main	way	of	estimating	the	impacts	
of	effects	 like	dispersal,	sometimes	 involving	spatially	
explicit	models	(Reed	et	al.	2002).	Simulation	allows	the	
solution	of	complex	problems	that	are	not	amenable	to	
general	theoretical	solutions,	but	can	only	give	answers	for	
the specific scenarios set up in the simulation. Theoretical 
modelling	 can	 lead	 to	 more	 general,	 mathematical	
solutions	that	allow	insight	into	much	broader	aspects	of	
relationships	(Shaffer	1981).

The	relationships	between	dispersal,	managed	area,	
and	population	viability	were	addressed	in	relation	to	kiwi	
for specific-shaped areas and some dispersal patterns, 
using	simulation	by	Basse	and	McLennan	(2003),	and	I	
will	revisit	their	model	as	an	example.

The	key	innovation	of	this	paper	is	that	for	density-
independent	dispersal,	geometric	probability	results	can	
be	 combined	 with	 standard	 matrix	 population	 models	
in	 a	 theoretical	 model.	 This	 enables	 a	 more	 general	
understanding	 of	 the	 relationship	 between	 dispersal	
distance	 and	 the	 size	 of	 managed	 area	 required	 for	
population	 growth.	 Laplace’s	 extension	 to	 the	 Buffon	
needle	problem	and	related	results	(Laplace	1812;	Solomon	
1978)	are	used	to	derive	the	probability	of	retention	of	
dispersing	juveniles	within	a	rectangle.	This	probability	
model	is	combined	with	a	matrix	model	to	evaluate	the	
area	of	management	required	to	support	population	growth	
under	differing	assumptions	about	dispersal.

Materials	and	methods
Dispersal model
The	 probability	 that	 a	 dispersing	 juvenile	 will	 remain	
within	a	given	region	depends	on	the	size	and	shape	of	
the	region	and	the	pattern	of	dispersal	distances.	It	may	
also	depend	on	the	density	of	the	species,	but	here	I	treat	
dispersal	 as	 independent	 of	 density.	 Assume	 initially	
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that	the	dispersal	distance	is	the	same	for	all	dispersing	
juveniles,	 and	 that	 the	 managed	 area	 is	 rectangular	 in	
shape.	(I	will	extend	this	to	a	probability	distribution	on	
an	individual’s	dispersal	distance	and	to	circular	shape	
later.)	 Results	 from	 geometric	 probability	 studies	 can	
be	applied.

Consider the case of dispersal of a fixed distance 
at	a	random	angle.	In	Laplace’s	extension	of	the	Buffon	
needle	 problem,	 let	 the	 needle	 represent	 the	 path	 of	 a	
dispersing	 animal,	 with	 one	 end	 where	 it	 was	 born	 or	
hatched,	and	the	other	where	it	settled	to	reproduce	(Fig.	
1).	Thus	the	centre	of	interest	is	whether	the	end	point	
remains	in	the	managed	area.	For	start	points	randomly	
distributed	(uniformly	by	area)	in	the	managed	rectangle	
and	dispersal	distance	 less	 than	 the	shorter	 side	of	 the	
rectangle,	the	probability	of	the	end	point	lying	within	
the	rectangle	is	given	by

where	k2	(≥1) is the ratio of the lengths of the sides of the 
rectangle	and	d (≤1/k)	is	the	ratio	of	the	dispersal	distance	
to	the	square	root	of	the	area	of	the	rectangle	(Laplace	
1812;	Solomon	1978).

It	is	clear,	both	intuitively	and	from	Eqn	1,	that	the	
best	shape	of	rectangle	to	maximize	r	with	respect	to	k	
is	a	square,	i.e.	k2	=	1.	The	shapes	of	the	curves	created	
from	Eqn	1	are	shown	for	a	square	and	two	rectangular	

shapes	in	Fig.	2.	Comparing	the	area	of	a	square	and	a	
2×1	 rectangle	 needed	 to	 achieve	 similar	 probabilities	
of	dispersal	within	 the	 region,	 the	 rectangle	 requires	a	
12.5–20%	greater	area	(in	the	range	d <	1	/ 2 ).

The fixed dispersal distance assumption can be 
relaxed	readily,	by	positing	a	probability	distribution	on	
the	 distance	 dispersed	 and	 integrating	 Eqn	 1.	 Validity	
is	 conditional	 on	 the	 distance	 being	 always	 less	 than	
the	 shorter	 side	 of	 the	 rectangle.	 For	 any	 probability	
distribution	of	dispersal	distances	(relative	to	size	of	the	
rectangle	as	for	d	above)	on	an	interval	[0,	1	/	k]	with	
mean	D and variance σ2,	Eqn	1	becomes

The	 applicability	 of	 Eqn	 2	 is	 limited	 in	 the	 range	 of	
distances	 allowed.	 However,	 upper	 and	 lower	 bounds	
for	the	probability	that	an	end	point	lies	within	the	region	
can	be	found	when	the	dispersal	distribution	goes	outside	
this	interval.	For	example,	an	upper	bound	is	gained	by	
replacing	the	probability	distribution	by	one	that	places	all	
the	probability	mass	from	outside	the	allowable	range	at	
the	edge	point	of	the	range,	while	a	lower	bound	is	given	
by	assuming	that	the	end	points	fall	outside	the	region	in	
all	cases	where	the	dispersal	distance	is	outside	the	range	
of	validity	of	Eqn	1.

A circular region is a candidate for a more efficient 
shape for retention within a region of fixed area. From 

Figure 1.	 Diagrammatic	 representation	 of	 the	 Laplace	
extension	of	Buffon’s	needle	problem.	The	box	 represents	
the	rectangle	(the	managed	area),	and	the	lines	represent	the	
needles	(the	dispersal	paths	of	the	animal).
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Figure 2.	Relationship	of	probability	of	dispersers	remaining	
within regions of various shapes for a fixed dispersal distance 
(scaled	by	square	root	of	the	region’s	area).	Values	are	only	
shown	within	the	distance	range	for	which	Eqn	1	and	Eqn	
3	are	valid.	The	solid	line	represents	the	square	shape.	The	
other	lines,	in	order	of	increasing	dash	length,	represent	the	
circle,	and	2×1	and	4×1	rectangles.
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Nahin (2000), for a fixed dispersal distance, with start 
points	 randomly	 distributed	 (uniformly	 by	 area)	 in	 a	
circular	region	of	area	A,

where,	as	before,	d	is	the	dispersal	distance	divided	by A ,	
and	this	is	valid	for	d	between	0	and	2	/ π 	(the	diameter	
of	the	circle,	approximately	1.128).	Fig.	2	shows	that	the	
shape	of	the	curve	from	Eqn	3	is	barely	distinguishable	
from	that	for	a	square	of	the	same	area.

A	question	of	interest	is	when	a	circle	will	be	more	
efficient in terms of the area required to gain a given 
probability	of	 the	 retention	within	 the	 region.	A	circle	
requires	 a	 substantially	 smaller	 area	 when	 retention	
probability	is	large,	exceeding	25%	at	the	extreme,	but	
the	situation	is	reversed	when	retention	probability	is	less	
than	0.27	(Fig.	3).

In	 contrast	 with	 the	 situation	 for	 a	 rectangle,	 the	
expression	in	Eqn	3	does	not	provide	a	simple	relationship	
when	a	probability	distribution	is	posited	for	d.	The	rest	of	
the	paper	will	concentrate	on	the	rectangular	situation.

Population model
Matrix	 population	 models	 provide	 a	 powerful	 and	
increasingly	popular	 approach	 to	analysing	 the	 impact	
of	 varying	 demographic	 parameters	 on	 population	
dynamics	 (Caswell	 2001).	 Given	 a	 matrix	 of	 constant	
population parameters for a population with fixed stages, 
it	is	straightforward	to	derive	the	condition	for	population	

growth.	Such	a	population	will	grow,	be	stable,	or	decline	
depending	on	whether	the	net	reproductive	rate	is	greater	
than,	equal	to,	or	less	than	1	(Caswell	2001).	Note	that	
we	are	not	 assuming	 that	demographic	parameters	 are	
actually	constant;	rather	we	are	assessing	a	given	set	of	
parameters	by	evaluating	what	would	happen	if	they	were	
to	remain	constant	(Caswell	2001).

For	a	population	falling	naturally	into	consecutive	
stages	–	typically	years	–	a	population	matrix	takes	the	
form	of	the	Leslie	matrix	(Leslie	1945).	Taking	a	model	
with	n	 stages,	 let	 bi	 be	 the	 reproduction	 rate	 from	 the	
ith	stage	and	pi	transition	rates	from	the	ith	stage	to	the	
(i + 1)th	stage	(for	i < n).	Also	let	pn	represent	survival	
in the final age class, allowing accumulation of mature 
individuals	here	–	an	extension	to	a	standard	Leslie	matrix	
that	has	pn =	0.	For	example,	a	four-stage	extended	Leslie	
matrix	would	be	

For	an	extended	Leslie	matrix,	it	can	be	shown	that	the	net	
reproductive	rate,	the	average	number	of	offspring	that	an	
individual	will	have	during	their	lifetime,	is	given	by

Hence,	 the	 condition	 for	 growth	 or	 stability	 in	 the	
population	for	the	extended	Leslie	matrix	is:

The	pi	can	be	decomposed	into	two	parts,	actual	physical	
survival	itself	si,	and	retention	in	relation	to	dispersal	ri,	so	
pi = ri si.	This	becomes	useful	in	considering	a	population	
with	an	age	at	maturity,	m,	such	that	dispersal	ceases	at	
this	age,	and	breeding	starts.	That	is	ri =	1	for	i ≥ m,	and	
bi	=	0	for	i <	m.	The	condition	then	becomes:
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Figure 3.	Percentage	increase	in	area	required	for	a	square	
managed	area	relative	to	a	circle	to	gain	the	same	retention	
probability.
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where	 ∏
=

=
n

i
irr

1
,	the	overall	retention	rate,	or

For	a	species	that	matures	at	the	last	age	group,	the	second	
term	in	the	bottom	line	of	Eqn	4	disappears,	giving	the	
intuitively	obvious	condition	for	growth,	that	the	mortality	
rate of breeders (1 − sn)	is	 less	 than	the	recruitment	 to	
breeders	given	by	the	product	of	breeding,	retention,	and	
survival	rates.

Putting the dispersal and population models 
together
We	can	put	the	dispersal	model	together	with	the	matrix	
model	for	the	population	in	the	managed	area	developed	
for	Eqn	4,	based	on	an	assumption	of	no	migration	from	
outside	the	managed	area,	i.e.	recruitment	of	breeders	from	
outside	the	managed	area	is	negligible.	This	assumption	
will	often	be	realistic	for	threatened	species	like	kiwi.

Combining	Eqn	2	and	Eqn	4	gives	the	expression	
to be satisfied for population growth, on a rectangular 
managed	region	with	a	probability	distribution	mean	D,	
variance σ2,	for	the	relative	dispersal	distance:

where	rc	is	the	value	for	the	retention	rate	given	by	the	right-
hand	side	of	Eqn	4	that	achieves	a	constant	population.

Hence,	 the	 condition	 for	 asymptotic	 population	
growth	 in	 terms	 of	 D	 (the	 mean	 relative	 dispersal	
distance)	is

and	 is	 valid	 for	 dispersal	 distance	 distributions	 in	 the	
interval	[0,	1/k].

For a square region and fixed dispersal distance, d,	
this	reduces	to

Hence,	since	D	and	d	denote	dispersal	distance	relative	
to	the	square	root	of	area,	the	minimum	area	for	a	self-
sustaining	population	is	a	quadratic	function	of	dispersal	
distance	 for	 a	 given	 set	 of	 demographic	 and	 dispersal	
parameters.

Application	to	the	North	Island	
brown	kiwi
Figure	 4	 shows	 a	 contour	 plot	 based	 on	 Eqn	 5	 of	 the	
minimum	area	for	a	sustainable	population	in	relation	to	
dispersal	distance	and	demographic	parameters.

The	results	can	be	readily	applied	to	conservation	
management	situations.	Populations	of	North	Island	brown	
kiwi	Apteryx mantelli	are	under	threat	with	an	estimated	
decline	in	remaining	populations	of	around	6%	per	annum,	
mainly	due	to	stoats	preying	on	chicks	(McLennan	et	al.	
1996).	To	deal	with	this	threat,	stoat-trapping	operations	
have	been	established,	some	covering	hundreds	of	hectares	
(100	ha	=	1	km2),	and	others	as	 large	as	10	000	ha	or	
more.	However,	although	kiwi	are	generally	faithful	to	
territories	as	adults,	juvenile	kiwi	can	disperse	substantial	
distances.	Basse	and	McLennan	(2003)	estimate,	based	
on	 preliminary	 data	 for	 dispersal,	 that	 for	 a	 dispersal	
distance	of	5	km	a	minimum	managed	forest	area	of	10	
000	 ha	 is	 required	 for	 a	 self-sustaining	 population	 of	
brown	kiwi.	They	use	a	computer	simulation	to	gain	this	
result,	with	movement	in	and	out	of	the	managed	zone	
based	on	simulated	populations	of	individuals.	They	also	
show	the	effects	of	some	alternative	values	for	the	key	
demographic	and	dispersal	parameters.	Their	estimates	
of	these	parameters	are	based	on	expert	opinion	and	prior	
research.	Here	we	apply	 the	simple	formulae	above	 to	
the	same	problem.

Figure 4.	Contour	plot	of	minimum	area	(km2	=	100	ha)	of	
a	square	managed	area	for	a	self-sustaining	population,	by	
dispersal	distance,	and	the	ratio	of	demographic	parameters	
given	 by	 the	 right-hand	 side	 of	 Eqn	 4.	 The	 dashed	 line	
corresponds	to	rc =	0.429,	corresponding	to	the	demographic	
parameters	for	kiwi	used	by	Basse	and	McLennan	(2003).
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For	simplicity	I	combine	the	juvenile	(0–9	months)	
and	 subadult	 (10–13	 months)	 stages	 of	 Basse	 and	
McLennan	(2003)	into	a	single	pre-breeder	stage,	and	retain	
adults	as	the	breeder	stage.	Taking	the	pre-breeding	stage	
as	equivalent	to	one	year	in	the	formulae	and	combining	
the	 demographic	 parameters	 of	 the	 two	 stages	 make	
the	results	almost	exactly	comparable.	The	model	also	
assumes	that	all	deaths	and	dispersals	take	place	at	the	
end	of	each	year	modelled,	and	only	the	female	population	
is	modelled	on	 the	assumption	of	a	balanced	sex-ratio	
in	the	population.	In	contrast	to	Basse	and	McLennan,	I	
assume that insufficient juveniles are bred for there to be 
any	dispersal	from	outside	into	the	managed	area.

Based	 on	 the	 demographic	 parameters	 given	 by	
Basse	and	McLennan	(2003),	I	take	b2	=	0.425	(females	
chicks	 produced	 per	 female),	 and	 survival	 rates	 s1	 =	
0.45	 and	 s2	 =	 0.918,	 giving	 rc	 =	 0.429	 as	 the	 critical	
retention	 rate,	 shown	 as	 a	 line	 in	 Fig.	 4.	 Calculations	
from	the	approach	outlined	here	match	the	results	of	the	
earlier	 simulation,	 even	 though	 quite	 different	 criteria	
for	sustainable	populations	are	used.	Additionally,	Eqn	
5	explains	the	quadratic	relationship	of	managed	area	to	
dispersal	distance	previously	derived	empirically.	For	a	
dispersal	distance	of	5	km,	Eqn	5	gives	a	minimum	area	
of	over	9400	ha,	similar	to	the	just	over	10	000	ha	given	
by	Basse	and	McLennan	(2003).

Discussion
The	results	given	here	apply	to	the	extended	Leslie	matrix	
population	 model	 with	 dispersal	 prior	 to	 breeding.	 In	
particular,	such	a	model	can	be	applied	for	 long-lived	
species	 as	 are	 common	 in	New	Zealand	wildlife.	The	
results	from	Eqn	5	could	equally	be	applied	to	a	shorter	
lived	species	that	disperses	before	breeding.	The	result	
for	a	standard	Leslie	matrix	population	model,	without	
accumulation	 of	 population	 in	 the	 last	 age	 group,	 is	
derived	 by	 setting	sn =	 0.	The	 results	 of	 the	 dispersal	
model	used	could	also	be	applied	in	more	general	matrix	
population	models,	 for	example	where	 there	are	more	
complex	 transitions	 between	 stages,	 or	 where	 some	
breeding	 happens	 before	 dispersal.	 In	 some	 cases	 the	
relationships	between	dispersal	and	population	growth	
may	be	able	to	be	derived	analytically.	An	approach	to	
deriving	 analytical	 formula	 for	 net	 reproductive	 rate	
for	more	general	matrix	population	models	is	given	by	
de-Camino-Beck	 and	 Lewis	 (2007).	 Where	 analytical	
solutions	are	not	possible,	numerical	approaches	could	
be	applied,	with	potential	for	reducing	computing	effort	
substantially	compared	with	simulating	populations.	The	
model	presented	here	has	the	advantages	of	being	simple	
both	in	concept	and	solution,	and	of	providing	graphs,	
or	simple	formulae	for	use	in	spreadsheets.	These	can	
be	readily	applied	in	conservation	management	without	
the need for application of significant computational, 

mathematical,	or	modelling	skills.
The	 derivations	 here	 depend	 on	 a	 number	 of	

assumptions	 in	 dispersal	 and	 demographic	 models.	
Interpretation	of	the	results	depends	on	the	plausibility	of	
these	assumptions	and	what	happens	when	the	assumptions	
are	violated.

The	assumption	that	dispersal	distance	is	independent	
of	population	density	 is	plausible	 for	many	 threatened	
species	of	interest,	as	they	have	often	suffered	substantial	
reductions	 in	 population	 density	 from	 a	 natural	 level.	
In	fact,	providing	the	dispersal	distance	estimates	used	
are	appropriate	for	the	current	density,	even	if	dispersal	
distance	increases	as	density	increases,	the	areas	derived	
will	be	large	enough,	as	the	current	density	will	clearly	
remain	sustainable.	Similar	arguments	can	be	made	for	
plausible	impacts	of	density	dependence	on	demographic	
parameters.

The	 analysis	 presented	 assumes	 no	 effective	
recruitment	into	the	managed	area	from	outside.	This	is	
an	important	assumption.	It	is	likely	to	be	appropriate	for	
many	 endangered	 species.	 Without	 management,	 their	
populations	are	already	in	serious	decline,	so	are	unlikely	
to	be	producing	many	dispersing	juveniles.	For	example,	in	
the	case	of	kiwi,	Bass	and	McLennan	(2003)	take	survival	
from	0	to	9	months	as	50%	in	managed	areas	and	as	5%	in	
unmanaged	areas.	The	impact	of	recruitment	from	outside,	
however	small,	can	only	boost	the	population,	and	hence	
will	make	estimates	of	minimum	area	that	allow	no	such	
recruitment	larger	than	necessary.

Is	shape	important?	A	square	shape	always	requires	
less	area	than	a	rectangle	to	gain	the	same	probability	of	
retention	at	dispersal.	However,	the	effect	will	be	small	
for	small	deviations	from	squareness.	For	a	2×1	rectangle	
the	impact	is	less	than	20%.	While	the	contrast	between	a	
circle	and	square	can	appear	large,	the	large	values	occur	
in	the	cases	where	retention	probabilities	are	already	high,	
and	the	managed	area	is	already	very	large	compared	with	
dispersal	distances.	In	many	cases,	interest	will	lie	in	the	
mid-range	of	retention	rates,	where	the	advantages	of	one	
shape	over	the	other	are	small	(less	than	10%	for	a	retention	
rate	less	than	0.6.)	This	suggests	that	for	retention	rates	
less	than	about	0.6,	exact	shape	is	not	critical,	provided	
that	distances	from	the	centre	to	the	edges	are	reasonably	
similar,	as	in	a	circle	or	square.

The	combination	of	historical	geometrical	probability	
results	 with	 matrix	 population	 modelling	 allows	 the	
derivation	 of	 quite	 general	 results	 for	 how	 large	 a	
managed	area	is	needed	to	protect	a	threatened	species	that	
disperses	before	breeding.	These	can	be	readily	applied	
in	 conservation	 management	 as	 in	 the	 kiwi	 example	
given. The method provides flexible tools for assessing 
the	trade-offs	between	options	to	manipulate	population	
parameters	 such	 as	 survival,	 dispersal,	 or	 recruitment,	
and	the	scale	on	which	these	need	to	be	implemented	to	
achieve	a	self-sustaining	population.
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