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___________________________________________________________________________________________________________________________________

Abstract: Berberis darwinii (Berberidaceae) is a serious environmental weed in New Zealand, capable of invading 
a range of different light environments from grazed pasture to intact forest. According to optimal partitioning 
models, some plants optimise growth under different environmental conditions by shifting biomass allocation 
among tissue types (e.g. roots, shoots) to maximise the capture of limiting resources (e.g. water, light). We 
examined patterns of growth, biomass allocation, and seedling survival in Berberis darwinii to determine whether 
any of these factors might be contributing to invasion success. Growth and biomass allocation parameters were 
measured on seedlings grown for 7 months in five natural light environments in the field. Survival was high in 
the sunniest sites, and low in the shadiest sites. Seedlings grown in full sun were an order of magnitude taller 
and heavier, had five times as many leaves, and proportionally more biomass allocated to leaves than seedlings 
grown in other light environments. In the shade, leaves were bigger and thinner, and leaf area as a proportion of 
total plant biomass increased, but the proportion of above- to below-ground biomass was similar across all light 
and soil moisture environments. In summary, although leaf traits were plastic, patterns of biomass allocation did 
not vary according to optimal partitioning models, and were not correlated with patterns of seedling survival. 
Implications for the management of this invasive species are discussed.___________________________________________________________________________________________________________________________________
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Introduction
Plasticity has long been considered a trait contributing to 
the success of weeds (Baker �965; Roy �990), but few 
empirical data exist to support or refute this assertion 
(Kolar & Lodge 200�). A species is said to be plastic if 
plants grown under different environmental conditions 
exhibit differences in morphological or physiological 
traits such as leaf characteristics (Popma et al. �992; 
Ryser & Eek 2000), photosynthesis (Ellsworth & Reich 
�992; Thompson et al. �992), and overall patterns of 
biomass allocation (Grime et al. �986; Chapin �99�; 
Wang et al. �994). This occurs to some extent in most 
plants, but a more plastic species may be better able 
to optimise its capacity to acquire the most limiting 
resource and hence maximise growth in a wider range 
of habitats than a less plastic species (Latham �992; 
Valladares et al. 2000). While there are, presumably, 

costs associated with being plastic, this may be one 
way invasive species succeed over a wide range of 
environmental conditions and thus gain an advantage 
over native species (e.g. Williams et al. �995; Fogarty 
& Facelli �999; Stratton & Goldstein 200�). 

One of the primary factors affecting seedling 
plasticity and growth is likely to be light availability 
(Kitajima �996; Poorter 200�), although soil moisture 
(Williams et al. �990; Veenendaal et al. �996a), nutrient 
supply (Rincón & Huante �994; Müller et al. 2000), 
herbivory (Schierenbeck et al. �994), and competition 
(Grime �979; Thébaud et al. �996) can also be important. 
Light is an extremely heterogeneous resource (Chazdon 
et al. �996), particularly in disturbed sites, which are 
often the point of entry for invasive species (Jesson et 
al. 2000; Lake & Leishman 2004), so it is an advantage 
for seedlings to be able to cope with a variety of light 
environments (Bazzaz �996). Most species respond 
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– to some degree – to reduced irradiance by developing 
larger, thinner leaves and by increasing the ratio of 
total leaf area to total mass (Givnish �988; Popma & 
Bongers �988), but the link between root:shoot ratio 
and light environment is less consistent (Callaway 
�992; Valladares et al. 2000), and may vary according 
to the shade tolerance of the species (Rao & Singh 
�989). Optimal partitioning models suggest that plants 
can optimise growth in a variety of environments by 
shifting resource allocation to leaf and stem production 
in light-limited environments, and to root production 
in nutrient- or water-limited environments (Bloom et 
al. �985; Tilman �988). Many studies support these 
models (Mooney & Winner �99�; Canham et al. �996; 
Poorter & Nagel 2000; Ryser & Eek 2000), although 
fewer have looked specifically at invasive species (but 
see Williams & Buxton �989; Pattison et al. �998; 
Longbrake & McCarthy 200�; Sanford et al. 2003). 

In this study we examine the link between plasticity 
and invasiveness in the exotic species Berberis darwinii 
Hook. (Berberidaceae). Berberis darwinii is a woody, 
evergreen shrub up to 4 m high, native to southern Chile 
and Argentina. Initially brought to New Zealand as an 
attractive garden plant, it was first recorded naturalised 
in �946 (Sykes �982). It has since invaded many 
vegetation types throughout the country, including 
remnant forest stands, scrub, and along roadsides (Webb 
et al. �988). It has high reproductive capacity and 
efficient seed dispersal by birds in New Zealand, and 
can form dense colonies that persist after overtopping 
by forest trees (Allen �99�). It is tolerant of drought 
and frost, and can occupy a wide range of soil types 
(Allen �99�; Timmins & Mackenzie �995). Plants can 
vary in growth habit, from dense shrubs with interlaced 
branches in open environments, to lianoid-like small 
trees up to �0 m tall beneath the intact forest canopy 
(Webb et al. �988; Allen �99�). It is this variable growth 
form and observed tolerance of a range of environmental 
conditions that suggests a highly plastic species. We 
hypothesised that plasticity in leaf traits and biomass 
allocation according to light environment contributes to 
this ability to establish in a wide range of habitat types. 
To test this, we grew seedlings in a range of natural 
light environments in the field for 7 months. We then 
asked three questions: (�) do leaf traits and patterns of 
biomass allocation vary across light environments, (2) 
do patterns of seedling mortality also vary, and (3) is 
there any correlation between (�) and (2)?

Methods
Study site
We conducted this study within the Karori Wildlife 
Sanctuary, a 249-ha ecological restoration site in 
Wellington, New Zealand (4�°�8.3’S, �74°44.8’E). 

Mean annual rainfall is �235 mm, and mean annual 
temperature is 12.8˚C (16.9˚C in January and 8.8˚C 
in July) (Greater Wellington Regional Council 
2005; NIWA 2005). The predominant vegetation is 
regenerating native podocarp–broadleaved forest, 
with remnant pockets of planted Pinus radiata and 
other exotic species (Moles & Drake �999). A large 
population of Berberis darwinii dominates the western 
hills adjacent to the sanctuary. 

In order to establish the influence of different light 
environments on patterns of biomass allocation and 
seedling survival, we chose five types of sites within the 
sanctuary, based on differences in canopy openness: full 
sun, edge, understorey, sycamore, and deep shade. Full-
sun sites were located near the centre of experimental 
treefall gaps. Some of these gaps were created in �999 
when groups of three to four Pinus radiata trees were 
felled for research purposes (McAlpine & Drake 2003), 
and others were created when large, single Pinus radiata 
trees were felled as part of the ecological restoration plan 
to eradicate exotic species from the sanctuary. Gaps were 
approximately 200 m2 in size, and were surrounded by 
regenerating native forest. Edge sites were located within 
5 m of the sunniest edge (approximately north-facing) 
of these treefall gaps. Understorey sites were located in 
areas of undisturbed canopy between gaps. Sycamore 
sites were located within mature stands of the exotic 
species Acer pseudoplatanus (sycamore). Sycamore is 
deciduous, so these sites are more seasonally variable 
than the evergreen sites in terms of the number of litter 
layers, soil moisture, and light levels. Deep-shade 
sites were located in the darkest accessible area of the 
sanctuary, beneath tall native forest, close to the shady 
side of a hill. Three replicates of each type of site were 
located, giving a total of �5 sites. Because the sycamore 
and deep-shade light environments were restricted to 
relatively small areas within the sanctuary, these sites 
may present a problem of pseudoreplication (Hurlbert 
�984). Two of the sycamore sites were approximately 
�00 m apart, and the third was 500 m away. Similarly, 
two of the replicate deep-shade sites were within 
50 m of each other, and the third was 400 m away. 
Accordingly, results are interpreted – and extrapolated 
– cautiously.

Environmental measures
In order to establish the differences in environmental 
conditions associated with the range of light 
environments, we measured canopy openness, soil 
moisture, and number of litter layers at the microsites 
where seeds were sown (see below). To quantify 
percent canopy openness at each microsite we used 
hemispherical photography and Gap Light Analyser 
(GLA) software. We photographed the canopy directly 
above each microsite using a Sigma fisheye lens with a 
180° field of view, scanned the photos and transformed 
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them into digital images, then analysed them with GLA 
software (Frazer et al. �999). High mortality of seedlings 
in the sycamore and deep-shade light environments 
meant that seedlings were harvested from outside 
prepared microsites (see below), so hemispherical 
photographs were not directly attributable to particular 
seedlings. In these cases we averaged percent canopy 
openness over the three microsites in each site. Canopy 
cover in both sycamore and deep-shade sites was 
uniform, so variability among sites was likely to be 
minimal. In order to capture the spring–summer light 
environment that seedlings experienced for the duration 
of this experiment, we photographed the deciduous 
sycamore sites in January 2002. Timing was less 
important for the relatively stable canopy composition 
of the evergreen forest sites, so we photographed them 
in August 200�.

We measured soil moisture levels at each microsite 
on an overcast day in August 200� using a Lincoln soil 
moisture meter. We inserted the moisture-sensitive 
probe 3 cm into the soil in each corner of each microsite, 
and took the average of these four values. Soil moisture 
is likely to vary throughout the year, but it is expected 
that the different sites are likely to vary in a similar 
way – except for the deciduous sycamore sites, which 
probably have deeper litter and thus higher soil moisture 
in winter compared with the other sites. To measure 
the number of litter layers, we counted the number of 
leaves pierced by a knife stabbed into the litter just 
outside each corner of each microsite, and averaged 
values for each light environment. 

Seedlings
Berberis darwinii seedlings were grown from seed in 
the �5 sites described above (three replicates each of 
five light environments: full sun, edge, understorey, 
sycamore, and deep shade). At each of the �5 sites, three 
replicate plots of approximately � m2 were cleared of 
plants, litter, and other debris, then levelled, and covered 
with � cm of forest soil that had been heat-sterilised to 
kill any resident seeds. At each plot we sowed Berberis 
darwinii seeds that had been collected from within and 
around Karori Wildlife Sanctuary in February 200�, 
cleaned of fruit flesh and stored dry until required. 
Seeds were sown in March 200�. Within each plot, �00 
seeds were sown onto a randomly allocated cell (20 
× 20 cm), giving a total of 4500 seeds sown. A single 
layer of homogenised broadleaved litter, collected 
from within the sanctuary, was then placed on top of 
the seeds in an attempt to replicate the environmental 
conditions that naturally dispersed seeds would 
experience. A sheet of �-cm mesh was placed directly 
on top of each plot to prevent birds from scratching in 
the loose litter and displacing seeds. Once the leaf litter 
had settled (July 200�) the mesh was removed. Most 
germination occurred in September 200�. Ten cells 
became overcrowded, so we thinned seedlings to allow 

a minimum of 4 cm between any two plants. These �0 
cells were excluded from survival analyses.

In March 2002 we harvested three randomly 
selected seedlings from each plot to measure growth and 
biomass allocation. Few seedlings had survived in the 
sycamore and deep-shade light environments so, where 
possible, we harvested naturally occurring, nearby 
seedlings that were obviously from the same cohort 
as the artificially sown seedlings (i.e. of a similar size 
and with the same lack of woody tissue). However, the 
total number of seedlings harvested did vary according 
to light environment: full sun, edge, and understorey: 
45, sycamore: 44, and deep shade: 20. Following 
harvest, each seedling was cleaned, then divided into 
roots, stem, and leaves. Roots were sufficiently robust 
to withstand the harvest and cleaning process without 
damage, although fine hairs may have been lost. In 
March 2003 we counted the remaining seedlings, and 
calculated percentage survival. Seedlings that had been 
harvested were not included in survival analyses.

Growth and biomass allocation measures
We measured total fresh leaf area with a Licor 320 leaf 
area meter. Spines (modified leaves) were present at 
the base of leaf clusters on the stems of well-developed 
seedlings that had grown in the full sun. These were 
often very similar in shape, form and colour to leaves, 
so we included them in the leaf analyses, along with 
healthy cotyledons. We also measured stem length and 
number of leaves while the seedlings were still fresh. We 
then dried the plant material at 45°C for 7 days before 
calculating total biomass, leaf area ratio (LAR, total 
fresh leaf area : total seedling mass), leaf mass ratio 
(LMR, total leaf mass : total seedling mass), and root:
shoot ratio (root mass : stem + leaf mass). We weighed 
three dried leaves of known (fresh) area per seedling in 
order to calculate the average specific leaf area (SLA, 
leaf area per unit leaf mass) of each seedling. 

Statistical analyses
We analysed the data using S-Plus 4 (Mathsoft �997) 
and SigmaStat 3.� (SPSS 2004) statistical software. 
To identify the best way to transform the data, where 
necessary, we evaluated each variable for the best 
distribution of expected cf. actual residuals (Zar �984). 
Number of litter layers, stem length, root mass, leaf 
mass, total biomass, total number of leaves, and total 
leaf area data were log-transformed. Proportion of root, 
stem, and leaf data were arcsin-transformed. All other 
data met model assumptions untransformed.

To examine differences in environmental measures 
(canopy openness, number of litter layers, and soil 
moisture) between light environments (full sun, edge, 
understorey, sycamore, and deep shade), we used 
one-way anova with light environment as predictor 
and environmental measures as response variables, 
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followed by multiple pairwise comparisons. P-values 
of all post hoc pairwise multiple comparisons are 
Bonferroni-corrected (multiplied by the number of tests 
done). For all anova analyses and pairwise multiple 
comparisons, results in which P < 0.05 are reported 
as significant.

We used linear mixed-effects models to examine the 
effect of canopy openness, number of litter layers, soil 
moisture, and site (i.e. replicates of light environment) 
on percent seedling survival. We also used linear 
mixed-effects models to test for differences among light 
environment, site (nested within light environment), 
and plot (nested within site) of stem length, root mass, 
stem mass, leaf mass, total biomass, root:shoot ratio, 
number of leaves, total leaf area, LAR, LMR, and 
SLA, and Sidaks tests to make post hoc comparisons 
(site and plot are treated as random effects). Because 
allocation to roots, stem and leaves within a plant is not 
independent (i.e. values were measured on the same 
individuals and must sum to one), we used multivariate 
analysis of variance using the Wilks’ lambda (λ) ratio 
to test for differences among light environment, site 
(nested within light environment), and plot (nested 
within site) of proportion of biomass allocated to root, 
stem, and leaf. 

Results
There were significant differences among light 
environments for canopy openness (d.f. = 4, F = 74.05, 
P < 0.00�), number of litter layers (d.f. = 4, F = 89.7�, 
P < 0.00�), and soil moisture (d.f. = �, F = 8.30, P < 
0.00�) (Fig. �). As expected, percent canopy openness 
was highest in the full sun, and lowest in the sycamore 
and deep-shade light environments, with intermediate 
values in the gap edges and understorey (Fig. �a). The 
number of litter layers was more variable, but was 
shallowest in the full sun (Fig. �b). Soil moisture was 
significantly lower in the full sun, but was relatively 
similar in all other light environments (Fig. �c).

Percent seedling survival was highest in the full 
sun (32.� ± 9.�) and gap edges (�9.5 ± 7.7) but only 
minimal in the understorey (0.8 ± 0.8) (values reported 
in brackets are mean ± � SE). No seedlings survived 
in the two shadiest light environments (sycamore 
and deep shade). Seedling survival was significantly 
influenced by canopy openness (d.f. = 1, F = 25.37, P 
< 0.00�), but not by soil moisture (d.f. = �, F = 0.63, 
P = 0.432) or the number of litter layers (d.f. = �, F 
= �.79, P = 0.�90). There was no effect of site (i.e. 
replication within light environment) (d.f. = 4, F = 
�.28, P = 0.297). 

All growth and biomass allocation parameters 
exhibited significant differences among light 
environments (Table �). Seedlings grown in the full sun 
had at least �0 times more total biomass than seedlings 

Figure 1. Box-plots of (a) canopy openness, (b) number of litter 
layers, and (c) soil moisture in different light environments 
(FS = full sun, E = edge, U = understorey, S = sycamore, 
DS = deep shade). The line within each box-plot indicates 
the median value, the lower and upper side of the box the 
25th and 75th percentiles, and the error bars the �0th and 90th 

percentiles. Within each graph, boxes that share the same 
letter/s are not significantly different from each other (P < 
0.05). See Methods section for details on how each variable 
was measured.

grown in any other light environment (Fig. 2). Seedlings 
grown in the three shadiest light environments were 
small, with no significant difference in their average 
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total biomass (Fig. 2). Seedlings from gap edges were 
significantly different from all others; smaller than the 
seedlings grown in full sun but larger than the seedlings 
grown in the understorey, sycamore, and deep shade 
light environments (Fig. 2). Seedlings grown in the 
full sun were also taller (Fig. 3a), with more leaves  
(Fig. 3b) and greater total leaf area (Fig. 3c) than 
seedlings grown in any other light environment.

Table 1. ANOVA using linear mixed-effects model of growth 
and biomass allocation parameters of Berberis darwinii 
seedlings by light environment, site (nested within light 
environment), and plot (nested within site). Site and plot were 
random effects, so only the results for the fixed effect (light 
environment) are presented. Summary table indicates variance 
ratios (F) and P-values. In all cases there are four degrees of 
freedom and �94 residual degrees of freedom. 
_______________________________________________________________

Growth and biomass 
allocation parameters F P
_______________________________________________________________  

Stem length 80.7� <0.00�
Root mass 277.7� <0.00�
Stem mass 323.66 <0.00�
Leaf mass 273.50 <0.00�
Total biomass 390.88 <0.00�
Root:shoot ratio 5.05 <0.00�
Number of leaves 203.04 <0.00�
Total leaf area �74.�8 <0.00�
Leaf area ratio (LAR) 54.50 <0.00�
Leaf mass ratio (LMR) 26.34 <0.00�
Specific leaf area (SLA) 49.41 <0.001
_______________________________________________________________

Figure 2. Total leaf, stem, and root biomass of Berberis 
darwinii seedlings grown for 6 months in different light 
environments (FS = full sun, E = edge, U = understorey, S = 
sycamore, DS = deep shade). Within each tissue type, bars that 
share the same letter are not significantly different from each 
other (P < 0.05). Error bars are ± �SE of the mean.

Figure 3. Box-plots of (a) stem length, (b) total number of 
leaves, and (c) total leaf area of Berberis darwinii seedlings 
grown for 6 months in different light environments (FS = full 
sun, E = edge, U = understorey, S = sycamore, DS = deep 
shade). The line within each box-plot indicates the median 
value, the lower and upper side of the box the 25th and 75th 
percentiles, and the error bars the �0th and 90th percentiles. 
Within each graph, boxes that share the same letter/s are not 
significantly different from each other (P < 0.05).
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According to the optimal partitioning model, we 
had expected plants growing in low light to allocate 
a higher proportion of biomass to shoots, and plants 
growing in high light to allocate a higher proportion to 
roots. However, contrary to our expectations, biomass 
allocation of Berberis darwinii did not vary in this 
way. Root:shoot ratios were similar in four of the five 
light environments (full sun 0.3� ± 0.02, understorey 
0.30 ± 0.02, sycamore 0.27 ± 0.02, deep shade 0.3� 
± 0.03), with only the edge-site seedlings differing 
significantly (0.37 ± 0.02) (values are mean ± SE). 
When biomass allocation was divided three ways 

into root, stem, and leaf (rather than root and shoot), 
light environment did have a significant effect (Table 
2). However, like most other parameters measured, it 
was only the seedlings grown in full sun that differed 
from the other light environments (Fig. 4). Post hoc 
comparisons indicated that seedlings grown in the full 
sun allocated more biomass to leaf and less to stem 
than seedlings from the other four light environments. 
Proportions of biomass allocated to roots, stem, and 
leaves in the edge, understorey, sycamore, and deep-
shade light environments were similar.

Table 2. Multivariate analysis of variance of biomass proportions (root, stem, leaf) of Berberis darwinii seedlings by light 
environment, site (nested within light environment), and plot (nested within site). Summary table indicates degrees of freedom 
for Wilks lambda (d.f.), Wilks lambda (Wilks), the transformation of the Wilks lambda to an approximate F value (Approx 
F), numerator and denominator degrees of freedom, and P-values.
___________________________________________________________________________________________________________________________________

Biomass proportion d.f. Wilks Approx F num d.f. den d.f. P
___________________________________________________________________________________________________________________________________  

Light environment 4 0.493 �8.76 8 354 <0.00�
Light environment:site �0 0.604 5.07 20 354 <0.00�
Site:plot 6 0.940 0.94 �2 354 0.5�4
Residuals �78
___________________________________________________________________________________________________________________________________

Figure 4. Proportion of biomass allocated to root, stem, and 
leaf in Berberis darwinii seedlings grown for 6 months in 
different light environments. Each data point is an individual 
seedling collected from that light environment (n = 45 from 
full sun, edge, and understorey; n = 44 from sycamore; n = 
20 from deep shade).

As expected, specific leaf area increased 
consistently as shade increased, with significant 
differences among four of the five light environments 
(Fig. 5a). Similarly, leaf area ratio increased consistently 
as canopy cover increased, although there was no 
significant difference among seedlings grown in the 
two shadiest light environments (Fig. 5b). Somewhat 
different was leaf mass as a proportion of total plant 
mass (leaf mass ratio). This was significantly lower 
in seedlings grown in the full sun, but was similar  
in all other light environments, with only  
seedlings from the understorey and sycamore light 
environments significantly different from each other 
(Fig. 5c).

Discussion
Differential microhabitat recruitment can be an 
important factor influencing adult plant spatial patterns 
(Russell & Schupp �998; Radford et al. 2002). In this 
study, seedlings survived well in the two sunniest 
sites, but died in the two shadiest sites. This gives a 
strong indication that Berberis darwinii seedlings are 
shade-intolerant. Interestingly, Allen (�99�) surveyed 
existing Berberis darwini seedlings in a range of light 
environments and concluded that establishment was 
enhanced by shade. However, this discrepancy between 
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Figure 5. Box-plots of (a) SLA (specific leaf area, leaf  
area per unit leaf mass), (b) LAR (leaf area ratio, total leaf 
area : seedling mass), and (c) LMR (leaf mass ratio, total leaf 
mass : seedling mass) of Berberis darwinii seedlings grown 
for 6 months in different light environments (FS = full sun,  
E = edge, U = understorey, S = sycamore, DS = deep shade). 
The line within each box-plot indicates the median value, the 
lower and upper side of the box the 25th and 75th percentiles, 
and the error bars the �0th and 90th percentiles. Within each 
graph, boxes that share the same letter/s are not significantly 
different from each other (P < 0.05).

our two studies might be due to the different ways we 
considered ‘shade’. Allen’s estimation of percent cover 
was restricted to plants less than 2 m tall, so there may 
have still been significant light reaching the soil surface 
through such short-stature vegetation, depending on 
the density of canopy foliage. We measured percent 
canopy openness without regard to canopy height, but 
in most cases the canopy was approximately 5–8 m tall, 
so only the full sun and edge sites received any direct 
light. In other words, Allen’s shady sites may in fact be 
comparable to our edge sites, and in both cases survival 
was high. Furthermore, Allen (�99�) found that seedling 
densities were significantly higher in open and edge 
vegetation classes than beneath young and old forest, 
which is also consistent with our findings. However, 
it is likely that other environmental conditions varied 
between Allen’s and our study.

While canopy openness was the strongest influence 
on seedling survival, this measurement alone may 
not account for all differences in light environment 
and hence seedling performance. Although edge and 
understorey sites were similar to each other in terms 
of canopy openness, the seedlings from these sites 
exhibited several significant differences: seedlings 
from edge sites had more leaves and lower specific 
leaf area than seedlings from understorey sites. This 
may be due to differences in the quality of light: the 
edges of forest gaps tend to receive more direct light 
than areas beneath the intact forest canopy, which 
tend to receive predominantly diffuse light (Chazdon 
& Fetcher �984; Canham et al. �990). Light beneath 
a canopy also has a different spectral composition 
and is strongly reduced in photosynthetically active 
radiation (Coombe �957; Federer & Tanner �966), and 
this too can affect seedling growth and survival (e.g. 
Schmitt & Wulff �993; Tinoco-Ojanguren & Pearcy 
�995). Likewise, the sycamore and deep-shade sites 
had similar levels of canopy openness, resulting in 
similar patterns of seedling growth and survival, but 
in the long term plants might perform differently in the 
two sites because the sycamore canopy is deciduous 
and therefore receives more light in winter. There are 
likely other factors beyond the scope of this study 
affecting seedling survival – for example, seedlings 
in the crowded full-sun sites might be further reduced 
by density-dependent mortality (Janzen �970; Connell 
�97�; Harms et al. 2000). However, in general these 
results strongly suggest that the chances of a seedling 
surviving are highest within and around disturbed sites 
where light levels are relatively high. 

High mortality of Berberis darwinii seedlings in 
the shade was unexpected, given that adult plants are 
shade-tolerant (Allen �99�; KGM pers. obs.). Other 
studies have shown shade-tolerant tree and shrub 
species to suffer high mortality in the shade as seedlings, 
possibly due to an increased presence of pathogens 
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(Augspurger & Kelly �984; Weber et al. 2003) or 
herbivores (Baraza et al. 2004), or because young 
seedlings cannot fix enough carbon at low light levels 
to resist these stressors and persist in the understorey 
(Kobe �997; Kaelke et al. 200�). For species like these, 
conditions required for establishment may be very 
different from conditions required for persistence. It 
is also possible that the shade-tolerance of Berberis 
darwinii increases as it ages, as has been suggested for 
other tree species (Kobe �999; Weber et al. 2003). Other 
invasive species of Berberis show a similar pattern of 
seedling growth and survival: B. thunbergii tolerates 
a wide range of soil and light conditions and persists 
under dense canopies, but seedlings are rarely found 
in very shady conditions (Ehrenfeld �999; Silander & 
Klepeis �999), and growth and survival of B. vulgaris 
seedlings is poor under low light conditions (Kollmann 
& Reiner �996). Light availability may be a limiting 
factor for the growth and survival of seedlings for all 
these species.

Seedlings grown in sunny sites also had significantly 
different growth patterns from seedlings grown in other 
sites. Sun-grown seedlings were an order of magnitude 
taller and heavier, and had five times as many leaves 
and a significantly higher leaf mass ratio than seedlings 
grown in other light environments. This general pattern 
is often characteristic of pioneer or light-demanding 
species (Bazzaz �979; Veenendaal et al. �996b) – as 
is low seedling survival in the shade (Denslow �987; 
Kitajima �994). Many species are able to regenerate 
in both high- and low-light environments (Welden et 
al. �99�), and can grow fast both in the sun and in the 
shade, relative to other species (Kitajima �994; Poorter 
1999), so are not easily classified into successional 
status. Berberis darwinii seems to be one such species, 
with traits of both early and late successional status: 
seedlings are largely restricted to high-light conditions, 
yet adults can persist in the shade.

Leaf mass ratio (LMR) of Berberis darwinii was 
low in the full-sun sites, and significantly higher in 
all four of the other, more shady, light environments. 
A similar study, which presented data for nine shrub 
and tree species growing in New Zealand, found that 
only about half of the species had a lower LMR in high 
light compared to low light, and the other half – which 
included two invasive species – had a similar LMR in 
both high- and low-light environments (Williams & 
Buxton �989). This response appears to vary among 
species, and not necessarily in accordance with shade 
tolerance (Souza & Valio 2003). However, given that 
very few seedlings in this study survived in even 
moderate shade, there must be factors additional to 
LMR that affect Berberis darwinii survival in the 
shade. Further research might pinpoint causal factors. 
Other growth parameters also varied across light 
environments: specific leaf area (SLA) and leaf area ratio 

(LAR) increased as light levels decreased. However, 
most plants increase SLA and LAR in response to low 
light levels (Boardman �977; Givnish �988), so these 
traits on their own are unlikely to be major factors 
contributing to invasion success. 

While there was some variation in biomass 
allocation across sites, this too was largely due to 
the fact that seedlings grown in full-sun sites were so 
different from seedlings grown in the other four light 
environments, and allocated considerably more carbon 
to leaves. In general, proportional allocation to above- 
and below-ground biomass did not vary according to 
the optimal partitioning hypothesis, despite significant 
differences in the light and soil moisture environment. 
Several studies have found similar results for invasive 
species (Pattison et al. �998; Schweitzer & Larson 
�999), but others have not (Williams & Buxton �989; 
Baruch et al. 2000). Similarly, non-invasive species 
may or may not exhibit morphological plasticity in 
biomass allocation when grown along a light gradient 
(Lusk & Del Pozo 2002; Montgomery 2004). It appears 
this trait is species-specific, and not necessarily linked 
to invasiveness per se. Furthermore, many phenotypic 
traits change during the life of a plant (Poorter & 
Pothmann �992; Coleman et al. �994; Gedroc et al. 
�996), so patterns of biomass allocation may be different 
– including more plastic – later in life.

In summary, the success of Berberis darwinii 
in a wide range of environments does not appear to 
be explained by plasticity in proportional biomass 
allocation at the seedling stage. Some leaf traits did 
vary consistently across light environment, but this 
is likely to be the case for native species too. First-
year seedling survival was low in the shade, despite 
adult plants of Berberis darwinii commonly occurring 
beneath an intact forest canopy. These results have 
implications for the management and control of this 
invasive species, where it occurs in similar conditions. 
While adult plants may be found in almost any light 
environment, the main focus of seedling control should 
be in and around high-light areas such as canopy gaps 
and other disturbed areas, since the majority of first-
year seedlings growing beneath the closed canopy will 
likely die off naturally.
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