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___________________________________________________________________________________________________________________________________

Abstract: Investigations	of	nest	predation	are	often	limited	by	the	researchers’	inability	to	identify	nest	predators	
accurately. I tested a chemical bait marker, Rhodamine B (RB), as an indicator of egg predation at artificial 
ground nests. In a pen trial, the presence of characteristic fluorescent bands in one or more facial vibrissae from 
all treatment animals confirmed the suitability of RB as a bait marker in the introduced European hedgehog 
(Erinaceus europaeus). In a field trial in which artificial ground nests were baited with RB-dosed eggs, five of 21 
trapped	hedgehogs	showed	evidence	of	RB	ingestion.	One	animal	showed	markings	indicating	two	temporally	
separate	predation	events.	This	ability	to	identify	nest	predators	to	species,	demographic	class,	or	individual	level	
could	lead	to	more	focused	control	programmes.	Other	potential	uses	of	this	technique	include	investigation	of	
individual foraging behaviour, calibration of predation rates in artificial nest studies, estimation of the efficacy 
of	poisoned	eggs	as	a	control	method,	and	testing	for	bait	or	poison	uptake	by	non-target	species.___________________________________________________________________________________________________________________________________
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Introduction
Predation	of	eggs	and	chicks	is	one	of	the	main	causes	
of	nest	failure	for	many	bird	species	(Ricklefs	1969;	
Martin	1992).	However,	researchers	are	often	unable	
to	identify	the	predator	species	involved	or	to	estimate	
their	relative	contributions	to	rates	of	egg	loss	(Moore	
&	Robinson	2004;	Villard	&	Pärt	2004).	Within	species,	
some	individual	predators	may	prey	disproportionately	
on	a	prey	type,	either	because	the	prey	happen	to	live	
within	 the	 individual’s	 territory	or	home	range	(e.g.	
coyotes	Canis latrans	in	Sacks	et	al.	(1999))	or	because	
the predator’s gender or reproductive status influence 
prey	selection	(e.g.	female	mice	Mus musculus	in	Miller	
&	Webb	(2001)).	On	river	braids	in	the	upper	Waitaki	
Basin,	 Sanders	 and	 Maloney	 (2002)	 video-recorded	
repeated	visits	to	ground	nests	by	predators	of	the	same	
species,	but	were	unable	 to	determine	 if	 these	were	
multiple	individuals	or	the	same	few	animals	returning	
to	the	same	nests.	Where	nest	predation	is	primarily	due	
to	introduced	pest	species,	as	is	the	case	in	Australia,	
New	Zealand,	and	many	island	ecosystems	worldwide,	
effective	control	of	these	predators	may	be	hindered	
by	this	lack	of	information	and	may	lead	to	expensive	
errors	in	conservation	management	(Larivière	1999;	
Sanders	&	Maloney	2002).

Nest	 predators	 have	 been	 identified	 from	
characteristic	 signs	 (Moors	1983),	measurements	of	
the	size	and	spacing	of	tooth	holes	in	shell	fragments	
(Green	 et	 al.	 1987),	 use	 of	 automatically	 triggered	
still	cameras	or	time-lapse	video	(Major	1991;	Brown	
et	al.	1998;	Sanders	&	Maloney	2002),	and	indirect	
methods	such	as	the	use	of	hair-sampling	devices	at	
nests,	and	plasticine	eggs	on	which	bite-marks	can	be	
identified (Pasitschniak-Arts & Messier 1995). Some 
methods,	such	as	interpretation	of	characteristic	sign,	
are	 unreliable	 (Brown	 et	 al.	 1998;	 Marini	 &	 Melo	
1998;	 Williams	 &	 Bohall-Wood	 2002)	 and	 others,	
such	as	video	monitoring,	may	be	reliable	but	their	use	
is	constrained	by	expense	or	 logistical	 requirements	
(Keedwell	&	Sanders	2002;	Sanders	&	Maloney	2002;	
Thompson	&	Burhans	2004).

A	 potential	 alternative	 technique	 is	 the	 use	 of	
bait	 marker	 chemicals	 that,	 when	 applied	 to	 eggs	
and	 subsequently	 ingested	 by	 a	 predator,	 leave	 a	
characteristic	physiological	sign	that	can	be	detected	
at	a	later	date.	Such	markers	have	been	used	to	study	
animal	movements,	bait	acceptance,	and	exposure	of	
non-target	 species	 to	 control	 methods	 (reviewed	 by	
Savarie	et	al.	1992).	Maier	and	DeGraaf	(2000)	used	
photographic	 evidence	 of	 visits	 by	 nest	 predators	
in	 combination	 with	 the	 time	 of	 appearance	 of	 the	
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Rhodamine-B-dyed	contents	of	eggs	 to	differentiate	
between disturbance and predation at artificial nests. 
My study aimed to build on these findings by testing the 
technique’s	ability	to	identify	individual	nest	predators	
and	to	record	repeated	predation	events	by	the	same	
individuals. The study was in two stages: firstly, a pen 
trial	of	the	suitability	of	the	dye,	Rhodamine	B	(RB),	for	
marking	European	hedgehogs	(Erinaceus europaeus),	
which	are	the	only	one	of	the	local	suite	of	introduced	
mammalian	nest	predators	in	which	RB	has	not	been	
tested	(Ogilvie	&	Eason	1998;	Fisher	et	al.	1999;	Spurr	
2002). A subsequent field trial using artificial ground 
nests	with	RB-dosed	eggs	showed	marker	consumption	
by hedgehogs that confirmed nest predation.

Rhodamine	B	is	a	non-toxic	xanthene	dye	that	is	
an	effective	biological	marker	for	a	range	of	mammal,	
bird, insect, and fish species (reviewed in Fisher 1998, 
1999).	 It	 is	 incorporated	 systemically	 into	 actively	
growing	 keratinous	 tissues	 such	 as	 claws,	 hair,	 and	
feathers, forming fluorescent bands that are detectable 
with	an	ultraviolet	light	source	or,	more	reliably,	using	
fluorescence microscopy (Johns & Pan 1981; Lindsey 
1983; Fisher 1995). The most suitable structures to test 
for	RB	marking	may	be	mystacial	vibrissae	(whiskers)	
because	 their	 resting	 phase	 is	 relatively	 short	 and	
vibrissae	are	therefore	more	likely	to	be	actively	growing	
at	 any	 one	 time	 compared	 with	 other	 hairs	 (Fisher	
1998).	Rhodamine-B	bands	are	effectively	permanent	
for	the	life	of	the	hair	and	‘travel’	up	from	the	base	of	
a	structure	as	it	grows.	This	property	suggests	that	RB	
can	be	used	in	pulsed	trials	where	temporally	spaced	
bait consumption may give rise to a series of fluorescent 
bands,	 each	 corresponding	 to	 a	 single	 ingestion	 of	
the	 marker.	This	 would	 allow	 detection	 of	 repeated	
predation	by	an	individual	predator.

Methods
Pen trial
Twelve	 wild-caught	 adult	 hedgehogs	 (6	 males,	 6	
females) were housed indoors in cages (660 × 250 × 
290	mm)	and	supplied	with	dried	cat	food,	water,	and	
nest	 material.	This	 sample	 size	 was	 predicted	 to	 be	
adequate	to	detect	marking	in	90%	of	treated	animals	
versus	<1%	of	untreated,	with	power	=	0.80	and	alpha	
= 0.05. Animals were weighed and visually assessed 
weekly.	After	 10	 days’	 acclimatisation	 to	 captivity,	
all	hedgehogs	were	supplied	with	a	cracked	egg	of	a	
domestic	fowl	(Gallus gallus)	instead	of	their	normal	
food. The eggs given to four males and five females 
had been injected with 25 mg of RB (0.045% by 
weight,	 based	 on	 guidelines	 in	 Fisher	 (1998)).	This	
was repeated 11 days later. The 25-mg dose of RB 
represented a mean dose per individual of 43.4 (± 5.0, 
95% CI) mg kg body mass–1 at the first dose and 44.3 

(±	4.7)	mg	kg–1	at	 the	second	dose.	Note	was	taken	
of	when	the	eggs	were	consumed.	All	animals	were	
humanely	killed	by	a	veterinary	surgeon	21	days	after	
receiving	 the	 second	 egg.	 Vibrissae	 were	 removed	
(mean	 number	 per	 animal	 =	 12,	 range	 10–13)	 and	
were examined under fluorescence microscopy by an 
experienced	technician.	

The	numbers	of	vibrissae	per	animal	that	would	
need to be examined to be confident of detecting 
either	 any	 band	 or	 two	 bands	 were	 estimated	 using	
equation	1:

n	=	 loge	α
	 loge	(1	–	p)	,

where	n	=	number	of	vibrissae	required	to	detect	the	
stated number of bands with confidence level α when 
p	is	the	proportion	of	vibrissae	marked	(Spurr	2002).	
Upper and lower limits were estimated using the 95% 
confidence intervals around the mean proportions found 
to	be	marked	per	dosed	animal.

Field trial
I constructed a pseudo-colony of 20 artificial ground 
nests	on	the	braided	riverbed	of	the	Ohau	River,	central	
South Island, New Zealand (44º20.0’S, 170º10.5’E) 
in	 October	 2003.	The	 habitat	 consisted	 of	 dry	 river	
gravels,	 small	 boulders,	 and	 silt,	 sparsely	 vegetated	
with	mats	of	low	vegetation,	including	Raoulia	spp.	and	
Scleranthus uniflorus. The 0.6-ha colony was sited 150 
m	from	the	margin	of	river	gravels	and	scrub	habitat.	
Nests	 were	 distributed	 randomly	 within	 the	 area	 at	
a	density	of	0.33	per	100	m2,	which	is	similar	to	the	
local	natural	density	of	black-fronted	tern	nests	(0.4	±	
0.7	per	100	m2) estimated by Keedwell (2005). Nests 
closely	resembled	natural	ground	nests	of	local	wader	
species,	each	consisting	of	a	shallow	depression	in	the	
gravels	containing	 three	domestic	hen-eggs	 injected	
with 25 mg of RB in solution. Eggs were placed in 
contact	with	each	other,	so	that	any	disturbance	could	
be	detected,	and	one	egg	was	cracked	to	provide	an	
olfactory	 cue	 to	 their	 presence	 and	 allow	 access	 to	
egg	 contents	 to	 predators	 unable	 to	 penetrate	 intact	
hen-eggs.	While	there	were	clear	differences	between	
these	nests	and	real	ones,	the	primary	objective	of	this	
trial	was	to	investigate	the	potential	of	the	technique	
rather	 than	 to	quantify	predation	rates	per	se.	There	
were	no	physical	markers	left	to	indicate	nest	locations	
and	all	human	activity	within	the	colony	was	carried	
out	while	wearing	rubber	gloves.

Eggs	were	left	 in	place	for	four	periods	of	four	
consecutive	 nights,	 each	 separated	 by	 14	 nights.	
Eggs	 were	 checked	 daily	 and	 any	 remaining	 eggs	
were	removed	at	the	end	of	each	4-night	‘pulse’.	One	
month after the eggs were finally removed, a trapping 
programme	 was	 used	 to	 sample	 the	 local	 predator	
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population.	Kill-traps	(two	Mark	VI	Fenn	traps	per	set	
under	a	plastic	Philproof	cover)	targeted	at	introduced	
mustelids	and	hedgehogs	were	set	for	12	nights	in	scrub	
habitat	 within	 20	 m	 of	 the	 boundary	 with	 the	 river	
gravels	and	also	around	the	perimeter	of	the	colony.	
Any mammals trapped were identified to species, 
weighed,	sexed,	and	a	sample	of	at	least	13	vibrissae	
removed	by	plucking.

Results
Pen trial
All	 eggs	 were	 eaten	 by	 both	 control	 and	 treatment	
hedgehogs	 within	 48	 hours	 of	 presentation.	 No	
fluorescent bands were found in any vibrissae from the 
three	control	animals.	At	least	one	band	was	found	in	at	
least	one	vibrissa	from	all	nine	dosed	hedgehogs.	The	
mean	percent	of	marked	vibrissae	from	each	treated	
individual was 32% (95% CIs 21–43%): 10% (3–18%) 
showed	one	band,	and	a	further	22%	(13–31%)	had	two	
bands.	Using	the	equation	above	it	can	be	estimated	that	
eight (range 5–13) vibrissae would need to be sampled 
to be 95% certain of detecting a fluorescent band. To 
detect two bands with the same level of confidence 12 
(8–22)	vibrissae	would	be	required.	Mean	growth	rate	
of	the	24	vibrissae	showing	two	bands	was	estimated	
from	 the	 distance	 between	 the	 bands	 to	 be	 0.16	 ±		
0.02	mm	day–1.

Field trial
There were 11 instances of predation at the 20 artificial 
nests	 and	 a	 further	 seven	 instances	 of	 eggs	 being	
disturbed,	but	not	eaten.	Most	predation	(67%	of	egg	
losses) took place in the first period of availability, 
during	which	eggs	were	eaten	at	four	separate	nests	in	
the	same	night.	In	the	third	exposure	period,	one	nest	
was raided on the first and third nights. Eggs were taken 
at	least	once	from	nine	of	the	20	nests.

Only	hedgehogs	were	caught	in	the	kill-traps,	at	
a	rate	of	4.83	captures	per	100	corrected	trap-nights	
(Nelson	&	Clark	1973).	Two	(both	male)	were	trapped	
on	the	river	gravels	near	the	colony	and	19	(9	males,	
10	 females)	 in	 the	 scrub	 trap-line.	 Five	 hedgehogs	
(24%; 3 males, 2 females) showed fluorescent vibrissal 
bands	indicative	of	RB	ingestion.	Vibrissae	from	one	
female had two fluorescent bands corresponding to 
two	temporally	separate	predation	events.	Within-	and	
between-individual	variation	in	the	distances	of	bands	
from	vibrissal	roots	meant	it	was	not	possible	to	associate	
a fluorescent band with a particular predation event.

Discussion
The pen trial confirmed the suitability of RB as a bait 
marker	in	hedgehogs,	as	in	other	introduced	mammalian	
predators	in	Australasian	ecosystems	(Ogilvie	&	Eason	
1998;	 Fisher	 et	 al.	 1999;	 Spurr	 2002;	 Marks	 et	 al.	
2003). The field trial showed that this technique can be 
used	to	identify	individual	nest	predators.	In	the	only	
other	published	account	of	 the	use	of	biomarkers	 in	
a	study	of	individual	predatory	behaviour,	Windberg	
et	al.	(1997)	were	able	to	estimate	the	proportion	of	a	
coyote population feeding on a flock of domestic goats 
(Capra hircus)	that	had	been	injected	with	the	marker	
iophenoxic	acid.

In	the	pen	trial,	the	percentage	of	vibrissae	from	
treated hedgehogs with bands (32%) was significantly 
less than Spurr’s (2002) estimate (56%) for stoats 
(Mustela erminea)	(χ2	= 11.59, d.f. = 1, P	<	0.001).	This	
could reflect a difference in the proportion of vibrissae 
growing	at	any	one	time	or	a	difference	in	vibrissal	
growth	 rates	between	 the	 two	species.	Spurr	 (2002)	
noted	that	markings	were	less	likely	to	be	detected	in	
the first 2 weeks after dosing than later on. Sampling 
of	 hedgehog	 vibrissae	 at	 around	 3	 weeks	 after	 the	
second dose of RB may have given insufficient time for 
the	bands	to	grow	out	and	to	be	clearly	distinguished	
from	the	basal	bulbs	of	the	vibrissae.	It	is	unlikely	this	
interspecific difference is related to dose rate (dosed 
hedgehogs	received	between	43	and	44	mg	kg–1		body	
mass	compared	with	the	62–108	mg	kg–1	of	Spurr’s	
stoats) because there was no significant correlation 
between	the	proportion	of	vibrissae	showing	bands	and	
the	dose	received	by	individual	hedgehogs.	Although	
hedgehogs	received	smaller	doses	than	stoats,	this	dose	
was	still	greater	than	the	24	mg	kg–1	that	Jacob	et	al.	
(2002) concluded was sufficient to cause banding in 
mouse	(Mus domesticus) vibrissae and the 15–30 mg 
kg–1	that	caused	band	formation	in	coyote	hairs	(Johns	
&	Pan	1981).	

Knowledge	of	the	growth	rate	of	vibrissae	allows	
the	persistence	of	markings	to	be	predicted.	The	mean	
vibrissal	length	in	this	study	was	19	(0.7	SE)	mm,	so,	
at	a	mean	growth	rate	of	0.16	±	0.02	mm	day–1	an	RB	
band	 could	 conceivably	 persist	 for	 119	 days	 before	
being	lost	through	natural	degradation	of	the	vibrissa	
tip.	Sampling	would	therefore	have	to	take	place	within	
this	 period.	 The	 longest	 potential	 gap	 between	 egg	
predation and kill-trapping in my field trial was 81 days. 
Markings	persisted	for	up	to	7	weeks	in	mouse	vibrissae	
(Jacob	et	al.	2002)	and	in	stoats	were	detectable	up	to	
4–6	weeks	after	baiting	and	were	found	in	vibrissae	
of	kill-trapped	wild	individuals	27	days	after	the	last	
possible	consumption	from	bait	stations	(Spurr	2002;	
Purdey	et	al.	2003).

Although	bands	could	not	be	assigned	to	individual	
predation	events	because	of	 the	marked	variation	in	
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the	distance	of	these	bands	from	the	vibrissae	bases,	
repeated	 egg	 predation	 by	 a	 single	 hedgehog	 was	
detected	by	‘pulsing’	the	availability	of	marked	eggs.	
This	ability	to	detect	individual	‘repeat	offenders’	or	
demographic	groups	causing	disproportionately	high	
rates	of	predation,	could	lead	to	targeted	management	
programmes	with	greater	focus	than	the	species-based	
rationales	currently	in	use.	Evidence	of	such	behaviour	
has	been	shown	or	inferred	in	a	range	of	mammalian	
species	including	feral	pigs	(Sus scrofa),	stoats,	mice,	
and	hedgehogs	(Pavlov	&	Hone	1982;	Ratz	et	al.	1999;	
Miller & Webb 2001; Jones et al. 2005).

Rhodamine-B-marked	eggs	could	also	be	used	to	
estimate the efficacy of poisoned eggs for pest predator 
control. This technique could refine estimated poison 
consumption rates in two ways: first, by testing the 
assumption	 that	 egg	 consumption	 is	 proportional	 to	
predator	abundance,	and	second,	by	testing	for	uptake	
in	non-target	species.	

Use of biomarked eggs in artificial nests and real 
nests,	as	additional	or	replacement	eggs,	could	be	useful	
in calibrating the relative rates of predation. Artificial 
nests	often	show	different	predation	rates	to	real	nests	
due	to	differential	susceptibility	to	subsets	of	the	local	
predator	guild	(Burke	et	al.	2004;	Moore	&	Robinson	
2004). This has led to the suggestion that artificial-nest-
based	studies	are	inherently	unreliable	(Zanette	2002;	
Burke	et	al.	2004),	whereas	other	authors	have	argued	
that a priori identification of predators and their relative 
impacts on both real and artificial nests, i.e. calibration 
of	study	methods,	can	lead	to	robust	conclusions	(Moore	
&	Robinson	2004;	Villard	&	Pärt	2004).	Studies	that	
account	for	 these	relative	 impacts	have	shown	clear	
correlations between impacts at real and artificial nests 
(Pärt	&	Wretenberg	2002;	Roos	2002).	Eggs	injected	
with	RB	can	potentially	be	more	attractive	 to	 some	
predators	by	providing	enhanced	visual	and	olfactory	
cues	 to	 their	 presence	 because	 of	 leakage	 of	 dyed	
contents	and	accelerated	decay	rates	respectively.	In	
spite	of	this	potential,	Maier	and	DeGraaf	(2000)	found	
no	difference	in	predation	rates	between	eggs	injected	
with	RB	and	a	reference	sample.

Most	methods	of	identifying	nest	predators	have	
drawbacks,	either	in	the	reliability	of	results	(e.g.	sign-
based	or	indirect	methods)	or	in	their	cost,	which	limits	
sample	 size	 and,	 accordingly,	 inference	 (Marini	 &	
Melo	1998;	Larivière	1999;	Keedwell	&	Sanders	2002;	
Thompson	&	Burhans	2004).	The	main	disadvantage	
of	the	method	proposed	here	is	that	a	potential	predator	
must first be trapped before testing for signs of the 
marker.	Trapping	programmes	are	a	common	form	of	
pest	predator	control	in	New	Zealand	and	Australia	and	
are	often	used	to	study	predator	behaviour	worldwide.	
If	 kill-trapping	 is	 inappropriate	 for	 management	
objectives,	vibrissae	may	be	obtained	from	live-trapped	
animals	(Fisher	1998).	The	technique	suggested	here	is	

also	limited	in	its	applicability	to	real	nests,	although	this	
could	be	overcome	by	integrating	it	with,	for	example,	
video	monitoring,	 or	 by	 exploring	 the	use	of	 dosed	
eggs	added	to	real	clutches.	The	ability	to	identify	nest	
predators	to	species,	demographic	class,	or	individual	
level	could	lead	to	more	focused	control	programmes	
and	may	also	allow	assessment	of	the	external	validity	
of studies involving the use of artificial nests.
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