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SHORT COMMUNICATION 

HARVESTING MODELS FOR RESOURCE-LIMITED 
POPULATIONS 

Summary: ’Extensive’ herbivore/vegetation models and ’intensive’ grazing models yield two conclusions for 
sustained-yield harvesting of populations regulated by an interaction with their resources. First, the growth curve 
for the population, relating growth rate to current density, and the equilibrium yield/effort curve under 
harvesting, are likely to be asymmetric, with peaks displaced to the right and maximum growth rate and harvest 
greater then predicted by the symmetrical, single-species logistic model. In general, the growth curve for a 
consumer has its peak displaced to the right relative to that of its resource. Second, stability of the population 
and harvest is greater at moderately high harvesting intensities than at low ones, and is greater the more 
leftward-peaked the resource growth curve. 
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Introduction 
Conventional models for estimating maximum 
sustainable yields from populations are generally 
single-species ones, like the logistic or its variants. 
Such variants embody depensation, in which 
population growth is reduced or becomes negative at 
low densities (Clark, 1976), and asymmetric growth, in 
which the curve relating population growth rate to 
current density has its peak displaced to the left or 
right (Schoener, 1973; Fowler, 1981; Barlow and 
Clout, 1983). They also include stochastic versions of 
the basic model, in which randomly-varying 
parameters provide insights into the relationship 
between the size and variability of the harvest. 
However, these models take no explicit account of 
population regulation through an interaction with 
other species, notably a resource upon which the 
harvested population depends. 

Such a system was briefly analysed by May el oJ. 
(1979) and Barlow and Clout (1983), using 
predator/prey-type models with harvesting imposed on 
the predator. May el al. (1979) used an ’interferential’ 
model (Caughley, 1976), in which predators are 
regulated by intra-specific competition as well as by 
prey density, while Barlow and Clout (1983) employed 
a ’laissez-faire’ (Caughley, 1976) herbivore/vegetation 
one, with herbivores regulated solely by vegetation 
density. Both models suggested that resource 
limitation leads to asymmetric growth curves and 
yield/effort curves for the harvested population, with 
peaks displaced to the right and maximum sustainable 
yields greater than predicted by the single-species 
logistic. 

However, a separate body of theory dealing with 
’intensive’ grazing systems (Noy-Meir, 1975, 1978; 

Barlow, 1987), in which herbivore numbers are fixed 
(c.f. the above ’extensive’ systems), suggests that these 
conclusions may be open to question; specifically, they 
may depend on the assumption by both the above 
models that the resource grows logistically. Models of 
intensive grazing systems (Barlow, 1987) show that the 
shape of the animal productivity/stocking rate curve 
depends on that of the vegetation growth curve, and 
can be almost symmetrical if the latter is leftward- 
peaked (Fig. 3d in Barlow (1987)). These models 
appear equally applicable to extensive systems in 
which herbivore numbers are held constant by 
harvesting, so similar conclusions should apply to the 
population growth rate (= sustained harvest)/ density 
curve, growth rate being simply another measure of 
animal productivity. 

Intensive grazing models also suggest that the 
stability of resource-limited populations under 
harvesting may differ substantially from that predicted 
by the single-species harvesting models. In particular, 
the system is most stable when the herbivore is scarce 
and the vegetation abundant, that is, under a lightly- 
stocked intensive system or a heavily, not lightly 
harvested extensive one. 

This note, therefore, returns to Caughley’s (1976) 
laissez-faire model to address two questions relating to 
sustained-yield harvesting of resource-limited 
populations. Firstly, is the population growth curve 
necessarily rightward-peaked, as suggested by May et 
al. (1979) and Barlow and Clout (1983)? Secondly, 
what is the effect of environmental stochasticity when 
it acts through variations in resource growth and 
availability, rather than directly on the harvested 
population as assumed in the single species models? 
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Model 

The model used is:  

 V = rV(l- V /K)/(l + qV /K)- c(l- exp( - dV)) 
..........................................................................................1) 

 H= H( - a+ b(1- exp( - dV)) - E .............................2) 

where V = growth rate of vegetation at a density V 
           H = growth rate of the herbivore population at 
 a density H 

q = parameter determining the shape of the 
vegetation growth curve (= (1- 2p)/p2 where 
p is the fraction of the maximum vegetation 
density at which vegetation growth peaks) 

E = harvest rate or effort (proportion removed 
 per unit time) 

r = maximum specific vegetation growth rate 
(= V /V as V 0) 

K= maximum ungrazed vegetation density 
c = maximum rate of food intake per herbivore 
d = grazing efficiency of herbivore when 

 vegetation is sparse 
           a = rate of decline of herbivores when the 
 vegetation is fully depleted 
           b = maximum effect of abundant vegetation on 
 herbivore growth rate (intrinsic rate of 
 increase = b - a). 

This is essentially Caughleyís (1976) model, with 
vegetation growing logistically (rV(1- V /K)) and being 
consumed at a rate per herbivore which levels off 
asymptotically as vegetation density increases 
(c(1- exp( - dV))). The herbivore rate of increase is 
linearly related to per capita intake; if intake is zero, 
herbivores die at a specific rate of a per unit time. The 
model is only modified here by the introduction of the 
term - EH for harvesting, and 1/(1 + qV /K) which 
allows the vegetation growth curve to be asymmetric; 
this vegetation model is discussed further in Barlow 
(1987). Note that maximum vegetation growth occurs 
when V /K= p, so the maximum growth rate in the 
absence of grazing is rp2/K, from equation 1. 

For the sake of example, parameter values are 
used as in Caughley (1976), namely r=0.8, K=3000, 
c= 1.2, d= 0.001, a= 1.1, b= 1.5. These values are 
strictly hypothetical but not inconsistent with a 
population of white-tailed deer in a grassland/forest 
mosaic (Caughley, 1976). Three different vegetation 
growth curves are considered, with p = 0.25 (leftward- 
peaked), p= 0.5 (symmetrical logistic), and p= 0.7 
(rightward-peaked), and the equation standardised to 
give the same maximum growth rate as in Caughleyís 

logistic model (p = 0.5). This is achieved by varying r 
such that the maximum vegetation growth rate 
(rp2/3000) equals 600 (=0.18x0.52/3000 in 
Caughleyís model). Results were obtained by running 
the model as a simple simulation until equilibrium was 
established at each imposed level of effort (E) from 
zero to 0.35. 

Results and Discussion 

Fig. 1 shows the effects of different shaped resource 
growth curves on that of the harvested consumer 
population, and on the yield/effort relationship. The 
basic model with a logistic resource growth equation is 
given by Fig. 1d, and, as demonstrated analytically by 
Barlow and Clout (1983), it yields a rightward-peaked 
curve for the harvested population (Fig. 1e). The 
yield/effort curve is also rightward-peaked (Fig. 1f). 
The leftward-peaked resource growth curve with 
p= 0.25 (Fig. la) gives an almost symmetrical 
consumer one (Fig. 1b), though the yield/effort curve 
(Fig. 1c) is still rightward-peaked and maximum 
sustainable yield is reached at the same level of 
harvesting effort (0.2) as in Fig. If. In the case of the 
rightward-peaked resource growth curve (Fig. 1g), that 
of the consumer is displaced still further to the right 
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and also exhibits two growth rates corresponding to 
each density when the latter is high (Fig. 1h). The 
lower (dashed) line corresponds to a low equilibrium 
resource level and the upper line to a higher 
equilibrium resource level at the same herbivore 
density. The second equilibrium is stable but the first 
is unstable, since any disturbance initiates diverging 
oscillations in population density and yield. The 
sustained yield/effort curve is also rightward-peaked, 
the dashed line in Fig. 1i again denoting an unstable 
equilibrium. 

To assess the stability of the harvested 
populations, the isoclines for zero resource change and 
zero consumer change are plotted in Fig. 2 for the 
three vegetation growth curves (p=0.25, 0.5 and 0.7) 
and two levels of harvesting effort (E = 0.05 and 
E = 0.25). The isoclines are the relationships between 
H and V when V = 0 in equation 1 and H = 0 in 
equation 2 thus: 

when V=0 in 1): 

H= rV(1- V/K)/c((1 + qV /K) (1- exp( - dV))) 

.......................................................................................... 3) 

and they allow the directions of change in V and H to 
be predicted from any starting point in the V /H 
plane, depending on which side of the V = 0 and H = 0 
lines the point lies (see Caughley (1976) for a fuller 
discussion). These directions are indicated by the 
arrows in Fig. 2a, and two examples given in Fig. 2c. 

The overall equilibrium point for the system is 
given by the intersection of the V and H isoclines, and 
the further this intersection is to the right the more 
stable the system (Caughley, 1976). In particular, if it 
lies to the left of the peak in the V isocline, the system 
is unstable and any disturbance will result in divergent 
oscillations (Fig. 2c). Thus, rightward displacement of 
the resource growth curve (Fig. 2c compared with Fig. 
2a) tends to reduce stability, moving the peak of the V 
isocline to the right. This is the same effect as an 
increase in the maximum vegetation density, K 
(Caughley 1976, Fig. 6.4), which gives rise to 
Rosenzweigís (1971) íparadox of enrichmentí. The 
paradox lies in the fact that increasing the maximum 
resource abundance renders the consumer population 
less stable. Interestingly, increasing harvesting effort 
tends to stabilise the population because it moves the 
H isocline to the right (i.e. V increases as E increases 
in equation 4). Caughley (1976) showed that increasing 
the maximum specific mortality rate of the consumer 

when H=in 2): 

         E+a 

 V=-d 1 .ln (1- b).........................................................4) 
                  d 
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(a) increased stability, and this is precisely the effect 
of harvesting. 

Increased stability implies reduced variability in 
the face of perturbations and environmental 
stochasticity. Fig. 3 shows the effect of a single 
perturbation on yields, with V instantaneously reduced 
by 20%, given the basic vegetation model (p = 0.5) and 
low (E = 0.05) and high (E = 0.25) levels of harvesting 
effort. Under intensive harvesting the yield returns to 
its original value more quickly, and asymptotically 
rather than through converging oscillations, compared 
with a population exploited at a lower rate. 

When the specific growth rate of the vegetation is 
varied continuously, by multiplying by uniform 
random. numbers between 0.6 and 1.4, the coefficient 
of variation of the yield declines as effort is increased. 
The absolute standard deviation of the yield first 
increases to a maximum at an effort level of 0.15, 
then declines as effort increases up to and beyond the 
level giving maximum sustainable yield (0.2; Fig. 4). 

This contrasts with conclusions from single- 
species models with stochastic density-independent 
variation. These suggest that absolute fluctuations in 
yield increase as effort increases, markedly so if 
exploitation exceeds the MSY (maximum sustainable 
yield) level, and that the coefficient of variation of the 
yield can increase or decrease as effort approaches the 
MSY level but thereafter always increases (May et al., 

1978). May et al. (1978) acknowledge that the 
conclusions may differ if stochastic variation affects 
the density-dependent term in the model rather than 
the density-independent one, and if the population is 
prone to overcompensatory oscillations in its virgin 
state, as in the present model. However, these 
alternatives appear to have received little subsequent 

attention given the likelihood of their occurrence in

nature. 

Conclusions 
An interactive herbivore/vegetation model suggests 
that the growth curve for a consumer has its peak 
displaced to the right relative to the growth curve of 
its resource. Where the resource curve is leftward- 
peaked, as appears to be the case for continuously- 
grazed grassland for instance (Barlow, 1987), the 
population growth curve may then approach the 
symmetric logistic. However, the resource curve must 
be extremely asymmetric for this to be true and if, as 
seems more likely, it lies somewhere within the range 
given in Fig. I, then the original conclusion of May et 

al. (1979) and Barlow and Clout (1983) appears to 
hold: the growth curve of a population limitedíby an 
interaction with a renewing food supply is never 
leftward-peaked, and is more likely to be rightward- 
peaked than symmetric. That is, the   -logistic (see 
Barlow and Clout, 1983): 

H = r 'H(1- (H/K' ) ) 

where r' = intrinsic rate of increase, K' = maximum 
density or carrying capacity and  = 2, may be a more 
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appropriate single-species model that the ordinary 
logistic (  = 1) for a resource-limited population. The 
yield/effort curve for such a population under 
sustained yield harvesting is also likely to be 
rightward-peaked. 

The model further suggests that closely coupled 
predator/prey or herbivore/vegetation systems, in 
which growth of the consumer is entirely dependent 
on the abundance of its resource, can be stabilised by 
cropping the consumer. Intensive harvesting, 
therefore, even at or above maximum sustainable 
yield, may not necessarily threaten a population’s 
stability or persistence in the face of fluctuations in 
resource availability. 

Classical, symmetric yield/effort curves (Schaefer, 
1968), and the conclusion from single-species models 
that variability increases and stability decreases with 
harvesting intensity, appear to apply well to fisheries. 
However, this may simply indicate that their 
populations are regulated by factors other than an 
interaction with the food supply, or that the 
interaction is of a different form to the above. For 
instance, they may be regulated during their larval 
stages by food abundance but themselves have little 
effect on the food supply (May et al., 1979). For other 
harvested populations Caughley’s (1976) model 
described here, and the considerable body of theory 
developed for intensive grazing systems by Noy-Meir 
(1975, 1978), suggest feasible alternative conclusions 
which may well be more appropriate. However, the 
models require at least a quantitative knowledge of the 
mechanism of population regulation or empirical 
estimates of the shape of the population growth curve. 
In the case of New Zealand’s terrestrial harvested 
populations, such as possums and deer, such data are 
still sparse. 
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