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Abstract: Accurate surveys and monitoring are required to guide the conservation and management of threatened 
species. Some fauna species are cryptic or difficult to observe because they are nocturnal, mimic other species, 
conceal themselves, or can be incredibly hard to survey. Emergence and activity of these species may be related 
to complex environmental cues including weather and atmospheric conditions. The conservation status of 
New Zealand’s long-tailed bat (Chalinolobus tuberculatus) is Threatened-Nationally Critical. Occurrence and 
activity of long-tailed bats is commonly monitored with acoustic bat detectors. However, even in locations 
where long-tailed bats are known to be present, they may only be detected on a subset of nights meaning that 
detection with acoustic detectors is imperfect. We analysed long-tailed bat detection data collected in Kinleith 
Forest, central North Island, New Zealand in 2006 and 2007 using zero-inflated generalised linear (mixed) effect 
models. We found relationships between bat detection and several environmental variables. Results suggest that 
bat surveys would be most effective at detecting bats when undertaken one to four hours after sunset, on nights 
when the temperature at sunset is above 8°C, and preferably when the temperature stays in the 8 and 17°C 
range during the night. Higher humidity and a light breeze may also be a desirable condition for monitoring. 
A night that is similar to, or slightly warmer, than recent nights may be favourable. Caution should be taken 
extrapolating these results to elsewhere because bats in other regions may respond differently to temperatures 
out of necessity. High site-specific variation in bat counts at higher temperatures and humidity occurred with 
zero activity often recorded. Therefore, we caution against assuming bats are absent because they have not 
been detected by surveys undertaken during higher temperatures and humidity conditions unless surveys have 
been run for multiple nights in suitable conditions.

Keywords: acoustic surveys, Chalinolobus tuberculatus, detection rates, echolocation, humidity, New Zealand, 
survey design, temperature, weather

Introduction

Survey and monitoring of threatened species is a critical 
requirement to determine whether a species is present at a site 
and whether management that aims to maintain or increase 
population size is being effective (Buckland et al. 2000; Legge 
et al. 2018). Threatened species may be present in low numbers 
or only present at a sub-set of locations over a wide area so 
detection of their presence can be difficult (MacKenzie 2005). 
This can become more challenging when the threatened species 
is also hard-to-survey because they are cryptic or elusive: they 
may look similar to other species, be nocturnal, hide from 
observers either deliberately or because they are ensconced 
in difficult-to-observe places such as cavities in trees during 
the day, and they may not emerge from these places daily 
(McDonald 2010). However, even cryptic species can produce 
detectable sounds that can be distinguished from those of other 
species and recording of these sounds can be used to estimate 
abundance, density, and activity (Marques et al. 2012).

Passive acoustic detectors are being used increasingly to 
sample the calls of threatened species (Gibb et al. 2018). In 
recent years, they have been used in a variety of ways to inform 
conservation managers. For example, they have been used 
to spatially and temporally model behaviour of a threatened 
passerine (Metcalf et al. 2019), to better understand distribution 
of a threatened cryptic wetland bird (Williams et al. 2018a), 
and to estimate colony sizes of bats as they emerge from caves 
(Kloepper et al. 2016). The use of passive systems that record 
calls of a threatened species without the need for a person 
to be standing alongside it interpreting the calls in real time 
has meant that larger areas can now be surveyed repeatedly 
and, over far longer periods, cost-effectively (Skalak et al. 
2012; Wright et al. 2016). However, for many species, little is 
understood about how best to target times of year or to design 
monitoring programmes so that species can be detected or 
changes in activity observed (Law et al. 2015).

Effectiveness of survey and monitoring efforts can be 
improved when more is understood about the activity patterns 
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and detectability of the cryptic species and when monitoring 
is designed using this knowledge (Williams et al. 2018b). The 
use of appropriate equipment can further reduce costs and 
increase the area over which sampling of threatened species 
can take place (Williams et al. 2018a; Metcalf et al. 2019) 
when the best period to sample these species is understood. 
For example, efforts to monitor matuku/Australasian bittern 
(Botaurus poiciloptilus), a threatened cryptic wetland bird, 
have become more effective since call-rate patterns have 
been better understood and monitoring has been restricted 
to a short time period around sunrise (Williams et al. 2018a; 
Williams, et al. 2018b).

Worldwide, more than one third of all bat species are 
considered threatened or are data deficient, which is more than 
other mammals or birds (Frick et al. 2020). Bats often remain 
unobserved because they are nocturnal, are often hidden from 
observers during the day as they roost in cavities or under bark 
of trees or in caves, and may not emerge from these each day 
(Czenze et al. 2017). Survey and monitoring for bats often uses 
acoustic detectors that detect bats’ echolocation calls (Skalak 
et al. 2012; Wright et al. 2016). For surveys (or inventory), 
acoustic detectors should be placed in habitat considered likely 
to be used by bats (Sedgeley 2012). However, the relationship 
between bat population size and echolocation call rates (also 
known as activity rates) is unclear, although it is assumed 
that declining activity levels should be a warning sign for a 
decreasing population (Law et al. 2015). This is because one 
bat can echolocate once or one hundred times at one location. 
Additionally, emergence and activity patterns can vary 
considerably between nights and seasons (O’Donnell 2000). 
This can be due to the combined influences of availability of 
prey and temperature (O’Donnell 2000), rain (Geipel et al. 
2019), stage of the breeding cycle (Borkin 2010), social activity 
(Hałat et al. 2018), and whether bats even emerge from torpor 
(a low metabolic state) and are active and able to be detected 
(Geiser et al. 2011). Also, bats do not always echolocate when 
flying, particularly when in the presence of conspecifics (Chiu 
et al. 2008). Understanding drivers of activity will help improve 
effectiveness of survey programmes by providing direction 
for operators around when surveys would be more likely to 
detect bats, if present.

Long-tailed bats (pekapeka Chalinolobus tuberculatus) are 
endemic to New Zealand. They are an edge-adapted species 
(O’Donnell 2000; O’Donnell et al. 2006; Borkin & Parsons 
2009) and classified as Threatened-Nationally Critical by 
the Department of Conservation (New Zealand government) 
and “Critically endangered” by the International Union for 
Conservation of Nature (O’Donnell 2021; O’Donnell et al. 
2023). Long-tailed bats are central-place foragers, so their 
distribution is limited by the need to return to a roost each 
day (Sedgeley & O’Donnell 1999; Borkin & Parsons 2011). 
Previous research has found that temperature at least partially 
drives long-tailed bat activity, with individuals that had 
transmitters attached not emerging from their roosts when it 
was below 5°C (O’Donnell 2000; Griffiths 2007), but these 
studies did not take place over all months of a year.

Acoustic surveys for long-tailed bats vary in duration, often 
being undertaken for 10 days over periods of fine weather. Data 
from these surveys usually contains a high frequency of non-
detections (zeros) and even at sites where bats are eventually 
detected there are often several nights where bat passes are 
not recorded at all. It is therefore difficult to conclude that 
long-tailed bats are not present at sites with suitable habitat 
even when not detected during a survey.

Projects, such as road developments, can involve the 
destruction of habitat that might be suitable for long-tailed 
bats. Provisions in the Resource Management Act (1991) 
and the Wildlife Act (1953) requires the presence or absence 
of species such as long-tailed bats to be determined at such 
sites before a construction project commences. If long-tailed 
bats are present, steps to conserve them and maintain their 
habitat must be incorporated into project planning (Smith et al. 
2017). Failure to reliably determine the presence or absence of 
long-tailed bats can either put the bats at risk, or unnecessarily 
delay or add expense to some projects. So, it is important for 
surveys to take place when detection of bats is most likely.

Development of effective survey methods for long-tailed 
bats requires an understanding of what factors are correlated 
with emergence from their roosts. O’Donnell (2000) and 
Griffiths (2007) both identified relationships between long-
tailed bat activity and temperature with emergence occurring 
on warmer nights (Griffiths 2007). However, more specific 
information on temperature thresholds and whether other 
variables influence emergence and detection rates would greatly 
assist in the development of long-tailed bat survey protocols.

The objective of this research was to analyse an existing 
data set from a central North Island Pinus radiata forest, to 
determine whether weather variables such as temperature, 
humidity, wind speed, and rain, predict long-tailed bat 
detection rates. If some of the variables measured do predict 
bat detections, then analysis may identify favourable conditions 
for surveys of long-tailed bats.

Methods

Data used for this analysis is from Borkin (2010). This is the 
first analysis of New Zealand long-tailed bat detections that 
spans all the months of the year. Data on temperature, relative 
humidity, rainfall, and wind speed were recorded in the study 
location and were available for correlation with bat detections. 
Field design and data collection was aimed at meeting the 
specific research objectives of Borkin (2010), but the data 
also provides a useful opportunity to investigate the above 
objective, although not collected for this purpose.

Study site
Long-tailed bat detections were recorded monthly over a year 
in three main habitat types: Pinus radiata stands, pasture, and 
native regenerating areas. The monitoring was undertaken 
within or adjacent to Kinleith Forest (37o 47ʹ S, 175o 53ʹ E), 
an exotic plantation forest comprising mainly Pinus radiata 
logged at that time using clear fell harvest on a 26–32-year 
cycle (Ministry of Agriculture and Fisheries 2007). Long-
tailed bats roost and forage within this forest (Moore 2001; 
Borkin & Ludlow 2009). The study area boundaries were the 
Kopakorahi Stream, the Waikato River, State Highway 1, and 
Jack Henry Road (Fig. 1).

Data collection
Acoustic monitoring of long-tailed bats was undertaken 
using Automated Bat Monitoring units (ABMs; New Zealand 
Department of Conservation Electronics Unit, Wellington, 
New Zealand 2005) between December 2006 and November 
2007. These units contained a heterodyne bat detector and are 
described in O’Donnell and Sedgeley (1994).
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Figure 1. Automated bat monitoring unit (ABM, detector) sites within unplanted, native regenerating and pasture areas, and P. radiata age 
classes (0–5, 6–10, and 11–25 years old) and the extent of these habitats within this area of Kinleith Forest at the time of data collection.



4	 New Zealand Journal of Ecology, Vol. 47, No. 1, 2023

Monitoring took place on the first five fine nights of each 
month that were suitable for monitoring. Monitoring did not 
occur on nights when rain was recorded in the first two hours 
after sunset. If the weather deteriorated sufficiently to disrupt 
data collection, monitoring was abandoned and repeated on 
the next available fine night. This field protocol (that omits 
inclement weather) means that the findings of the analysis 
carried out here cannot be extrapolated to include very bad 
weather days such as those with very high windspeeds and/
or rainfall.

Monitoring began at sunset and ended at sunrise. Times 
of sunrise and sunset were based on the closest main centre 
(Tauranga) published in the New Zealand Nautical Almanac 
(Land Information New Zealand 2006, 2007). Different sites 
were monitored for each of the five nights each month; 25 
sites in total were surveyed each month, but these were not 
always the same site. ABMs were allocated randomly to 
sites. Sites were chosen so that there were equal numbers of 
ABMs in unplanted, native regenerating and pasture areas, 
and across three P. radiata age classes (0–5, 6–10 and 11–25 
years old). The native regenerating areas were young, low 
stature, islands of mainly modified vegetation in a matrix of 
P. radiata plantation, and largely consisted of kānuka (Kunzea 
ericoides), kōhūhū (Pittosporum tenuifolium), Coprosma spp., 
and makomako (Aristotelia serrata) with exotic weeds present 
at most sites and few or no mature trees.

Roads and edges were chosen as sites to place ABMs 
as long-tailed bats are known to use these more than forest 
interiors (O'Donnell 2000; Moore 2001; Griffiths 2007; Borkin 
& Parsons 2009). The microphone in each ABM was oriented 
parallel to the edge. The direction along the road or edge that 
the microphone was orientated was determined by tossing a 
coin. The types of ABMs used in this study can detect long-
tailed bats that pass within 50 metres (Parsons 1996). Sites 
were sufficiently placed so that a long-tailed bat could not 
be detected simultaneously at multiple sites, so sites were 
considered independent.

ABMs were set to 40 kHz, which corresponds with the peak 
energy of long-tailed bats’ echolocation calls (Parsons 2001). 
Calls of the other extant New Zealand bat species, Mystacina 
tuberculata, peak in energy at 28 kHz, and so echolocation 
calls are easily differentiated (Parsons 2001). Bat activity was 
quantified as the number of bat passes recorded (Appendix 
S1 in Supplementary Materials). One bat pass was defined 
as a sequence of two or more echolocation calls separated 
from other calls by a period of silence of at least one second 
(Thomas 1988).

Weather data was supplied by the Rural Fire Protection 
Authority from a permanent weather station (Athol Base) 
situated within the area being studied. Data provided for 
analysis included rainfall (mm), air temperature (°C), relative 
humidity (%), and wind speed (km h−1), hourly. Maximum 
overnight temperature, relative humidity, and wind speed, as 
well as the total overnight rainfall was calculated, in addition 
to the previous night. Differences between the maximum 
overnight weather variables and the same variables for the 
previous night were also calculated.

Data analysis
All analyses were carried out in R version 4.1.2 (R Core 
Team 2021). Selection of environmental predictor variables 
is outlined in Appendices S2–S5 in Supplementary Material. 
We modelled bat passes in response to environmental variables 

using zero-inflation models, which reduce problems associated 
with multiple zero sources (true and non-detection) and resulting 
overdispersion (Zuur 2009). Zero-inflation models consist of two 
sequential steps: (1) a zero-inflation sub-model is parameterised 
to distinguish true zeroes from non-detection zeroes, (2) a 
count sub-model is calibrated that includes a smaller subset 
of the zero values. We used this two-step process to build two 
models at two discrete temporal scales that can be important 
to bat surveyors. Firstly, we modelled at the scale of whole 
nights (hereafter: night model), which answers the question 
“On which night should I survey?”. In the night model the 
response variable was total bat passes recorded over the course 
of the night as predicted by weather data at larger scales, such 
as the total precipitation over the course of the preceding day. 
Secondly, we modelled at the scale of one hour (hereafter: hour 
model) which answers the question “At what time of the night 
should I survey?”. In the hour model the response variable 
was total bat passes recorded over the course of the hour as 
predicted by instantaneous weather conditions recorded hourly, 
such as windspeed. Both response variables and most predictor 
variables were poorly correlated across the two scales (Pearson’s 
correlation coefficients: bat passes = 0.52, wind speed = 0.41, 
temperature = 0.83, precipitation = −0.07). We expected that 
hourly bat behaviour may be modulated seasonally due to life 
cycle stages. The hour model therefore included only data from 
December to April and only the first eight hours after sunset.

We built the night model using the package pscl version 
1.5.5 (Jackman 2020), and modelled hour data in the package 
glmmTMB version 1.1.2.3 (Brooks et al. 2017). We included 
location as a random effect in the hour model to account for the 
non-independence of datapoints. All models were fitted with 
a Poisson distribution and a log link for the count model and 
a binomial distribution with a logit link for the zero-inflation 
model. In the case of both the night and hour models, we first 
calibrated a full additive model version using all uncorrelated 
predictors in both the zero-inflated and the count sub-models 
and habitat type (native forest, plantation or pasture) in the 
zero-inflated sub-model. Some predictors appeared to have 
quadratic, not linear, relationships with the response variable 
on visual inspection and were included as such in the model. 
Next, non-significant terms were dropped sequentially from the 
model until only significant terms remained in each sub-model. 
To ensure we had considered the most parsimonious solution, 
we calibrated several additional simpler model structures. These 
included structures where quadratic terms and terms with small 
absolute coefficient estimates were dropped.

All model structures for each data type were compared to 
one another and to a null model that excluded the zero-inflation 
portion (Appendices S6–S7). Models were compared using 
Akaike’s Information Criterion (AIC; Sakamoto et al. 1986) and 
r-squared values where possible using the package performance 
version 0.8.0 (Lüdecke et al. 2021). In addition, we used log 
likelihood ratio tests in the function lrtest in the package lmtest 
version 0.9-39 (Zeileis & Hothorn 2002) as well as the Vuong’s 
non-nested hypothesis test in the pscl package (Vuong 1989) 
for the night models.

Results

Fit models
Night model
The best performing night model (R2 = 0.74) is presented in 
Fig. 2. The zero-inflation portion of the model was of the form:
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Figure 2. Effect of environmental variables on recorded nightly bat passes. Environmental variables include both absolute measurements, 
and changes in the variable from the preceding night (denoted by Δ); the full definition of each predictor is provided in the model 
structure. For each environmental variable, presented from left to right: field observations, zero inflation sub-model results (this graph is 
presented in white where the variable is not a significant predictor), and count model predictions. Habitat types are (1) plantation forests, 
(2) pasture, and (3) regenerating native areas.
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Figure 3. Effect of environmental variables on recorded hourly bat passes. The full definition of each predictor is provided in the model 
structure. For each environmental variable, presented from left to right: field observations, zero inflation sub-model results (this graph is 
presented in white where the variable is not a significant predictor), and count model predictions. Habitat types are (1) plantation forests, 
(2) pasture, and (3) regenerating native areas.

Σpasses ~ TSS + T∆ +Habitat

And the count portion of the model was of the form:

Σpasses ~ poly (TSS) + WSSS + RainΣd +  
RHSS + poly (T∆) + poly (Rain∆)

		
Where (1) Σ passes = sum of all bat passes over the night of 
the observation, (2) TSS = temperature at sunset on the day 
of the observation, (3) T∆ = mean temperature on the night 
of the observation minus mean temperature on the preceding 
night, (4) WSSS = windspeed at sunset on the day of the 
observation, (5)  RainΣd  = the total precipitation (mm) over 
the preceding day, (6) RHSS = relative humidity at sunset on 
the day of the observation, (7) Rain∆ = total rain on the night 
of the observation minus total rain on the preceding night, 
and (8) ‘poly’ indicates a polynomial (quadratic) relationship.

Hour model
The best performing hour model (conditional R2 = 0.63;  
Fig. 3) had a zero-inflation portion of the form:

	 	 Passesh ~ Habitat (3)

(4)
And the count portion of the model was of the form:

Passesh~ poly(Th) + WSh + poly(H) + 1|Location

Where (1) Passesh = number of bat passes in the hour of 
the observation, (2) Th = the temperature recorded at the 
hour of observation, (3) WSh = the windspeed at the hour of 
the observation, (4) H = the number of hours since sunset,  
(5) 1|Location indicates that ABM location was used as a 
random variable, (6) Estimated parameters, standard errors, 
and t-values for each model are provided in Appendix S6.

Predictions
Night model
The baseline odds of not detecting bats when bats may really 
be present (i.e., a false zero) were high. For every night and 
location with a bat detection 11.7 nights are expected that are 
false zeros (predictions of odds are presented as exponentiated 
parameter estimates for the hurdle model).

Rates of detection increased on warmer nights. The odds 
of non-detection decreased by 0.88 for each 1°C increase in 
temperature at sunset (−0.13 ± 0.05 (parameter estimate and 
standard error), p = 0.01). False zeroes were particularly likely 
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when the temperature was below 8°C. Similarly, chances of 
detection are increased on nights that are warmer than the 
preceding night. For every 1°C warmer that the night is than 
the preceding night the odds of non-detection reduce by 0.91 
(−0.09 ± 0.05, p = 0.04).

Habitat has a large impact on non-detections. The 
chances of false zeros are highest in plantation forest, lower 
in regenerating native areas, and highly unlikely in pasture. 
Relative to plantation forest, the odds of a false zero is reduced 
by 2.98 (1.09 ± 0.36, p < 0.01) and 27.36 (3.31 ± 1.02,  
p < 0.01), for regenerating native areas and pasture respectively.

Models incorporating polynomial terms have coefficients 
that are difficult to interpret so polynomial coefficients are not 
reported here. Instead, we provide a description of relationships. 
Fewer bat passes were predicted when temperature at sunset 
was below 8°C or above 14°C (polynomial relationship, p < 
0.01). Higher windspeeds at sunset had a small positive effect 
on the number of bat passes predicted over the night (0.03 
± 0.01, p < 0.001) over the range considered. The total rain 
over the day had a negative relationship with bat pass counts 
(−0.11 ± 0.04, p < 0.01), although higher relative humidity 
at sunset was associated with slightly higher bat pass counts 
(0.03 ± 0.01, p < 0.001). We predict most bat passes on nights 
with similar or slightly warmer temperatures relative to the 
preceding night (polynomial relationship, p < 0.001); when a 
night was > 2°C colder or > 5°C warmer than the preceding 
night, fewer bat passes were recorded. Differences in overnight 
rain relative to the preceding night affected bat pass counts 
(polynomial relationship, p < 0.001), with highest counts 
when precipitation levels are similar to the preceding night.

Hour model
The baseline odds of bat non-detections in the hour model 
were much lower. For every hour when bats are detected, 3.9 
hours are expected at that same site that are false zeros. This 
is likely because, as expected, location (i.e. site), which was 
included as a random effect, explained a substantial amount 
of variance (4.54; standard deviation = 2.13).

Only habitat type significantly impacted bat non-detection 
(false zeroes). Bat non-detections were most likely in plantation 
forest, and significantly less likely in pasture (odds reduce 
by 15.21; 2.72 ± 1.29, p = 0.03). There was a non-significant 
reduction in bat non-detection in regenerating native areas 
relative to plantation forest (0.51 ± 0.62, p = 0.41).

The count sub-model indicated that temperature, wind 
speed, and hours from sunset determined how many bat passes 
were recorded (the count sub-model). Bat passes within a 
given hour were most likely to occur when the temperature 
was between 8 and 17°C (as a polynomial, p < 0.001), with the 
greatest reductions in bat passes expected when temperatures 
were very low. Higher windspeeds were associated with slight 
increases in bat pass numbers (0.09 ± 0.03, p < 0.001) over 
the range of windspeeds encountered during the survey (1.6-
29 km h−1). Finally, time from sunset determined how many 
bat passes were detected (as a polynomial, p < 0.001), with 
bat detections peaking two hours after sunset i.e., 120–180 
minutes after sunset.

Discussion

Little is known about what drives long-tailed bats to emerge 
from their roosts and forage at certain sites on certain nights. 
O’Donnell (2000) and Griffiths (2007) observed that long-

tailed bat emergence and activity was related to temperature 
with the latter study noting a 5°C threshold below which long-
tailed bats would not emerge. Our research provides nuance 
to the trend identified by previous work that temperature is 
a key driver of detection rates and expands on the finding by 
showing that other environmental variables are also important 
determinants of bat activity patterns.

Our research also reinforces the importance of vegetation 
—exotic or native— for long-tailed bats. Despite long-tailed 
bats being observed foraging and commuting over pasture 
elsewhere (Dekrout 2009), this was the least likely habitat for 
bats to be detected within in this study, followed by islands 
of native regenerating areas with few or no mature trees, then 
plantation forest. Borkin’s (2010) analyses of the same data 
found that most activity in plantation forest was within the 
oldest stands; typically, the oldest vegetation remaining in 
the landscape.

On which night should I survey?
We show that bat detection on a given night is most likely 
when temperature at sunset is above 8°C and on nights that 
are warmer than the preceding night. Interestingly, temperature 
at sunset was the only environmental variable considered that 
determined whether bats were detected on a given night; both 
the absolute temperature and whether the preceding night 
was warmer or cooler determined detection rates. However, 
the number of detections were further explained by relative 
humidity at sunset, windspeed, and total rainfall overnight 
relative to the previous day. Nights with very low windspeeds 
or very high temperatures had fewer bat detections. Although 
bat activity reduced after rainy days, humid nights had more 
bat detections. The amount of bat activity also depended on 
environmental conditions in the context of earlier weather; the 
highest numbers of detections occurred on nights with similar 
or slightly warmer temperatures relative to the preceding night 
and when precipitation levels are similar to the preceding night.

Understanding which nights are likely to be best to survey 
for bats is crucial if surveys are to be effective at detecting 
bats where they occur. Surveys that take place during periods 
when temperatures are low or on nights when the weather 
is particularly inclement are likely to be less reliable for bat 
detection, but may still detect bats. In Fiordland long-tailed 
bats flew in temperatures are cold as −1.5°C (O’Donnell 
2000), we detected bats flying on nights with temperatures 
as low as 8.4°C at sunset when temperatures had dropped as 
low as 5.6°C during the day. Our dataset avoided particularly 
inclement weather, but we expect that bats would be detected 
at lower temperatures. Despite O’Donnell’s (2000) comments 
that previously published studies were incorrect when they 
suggested that long-tailed bats hibernate for several months 
over winter (e.g. Daniel & Williams 1981), this continues to be 
repeated in the unpublished literature and in public talks. We 
highlight that we, along with other researchers, detected bats 
each month we collected data (O’Donnell 2000; Griffiths 2007; 
Borkin & Parsons 2009). We expect that the lower detections 
found on cooler or more inclement nights reflect a response 
by bats to the lower availability of invertebrates (O’Donnell 
2000; Griffiths 2007), a greater use of torpor (O’Donnell 2000; 
McNab & O’Donnell 2018), and an earlier return to roosts on 
nights when temperatures are cooler (Griffiths 2007).

Detection rates of bats are also likely to vary with the 
location of the caller and habitat. Bats that are closer to detectors 
are more likely to be recorded (Freeze et  al. 2021). When 
detectors are placed in habitat with high levels of clutter, bats 
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are less likely to be detected because their calls are blocked, 
reflected, or distorted by objects between the bat and the 
detector (Freeze et al. 2021). Given that we chose to place 
ABMs on roads and edges in all habitat types in our study, 
we expect this has had little effect on detection variability in 
our case, apart from along the edges of native regenerating 
areas which were relatively cluttered compared to other habitat 
types (Borkin 2010).

The rate at which bat calls attenuate varies with the speed of 
sound and atmospheric attenuation, so this may affect detection 
rates, but the exact relationship depends on the frequency at 
which bats call (Pettersson 2004; Goerlitz 2018). Both the 
speed of sound and atmospheric attenuation differ with weather 
conditions, particularly temperature and relative humidity 
(Pettersson 2004; Goerlitz 2018). Atmospheric attenuation 
reaches a maximum at high temperatures and low-medium 
humidities with lower rates at higher relative humidities and 
lower temperatures (Goerlitz 2018). We suspect that this means 
that for long-tailed bats, which call at a peak amplitude of 
36–40 kHz (O’Donnell & Borkin 2021), detections observed 
at higher relative humidities, whether these are warm or cool, 
are an underestimate of the true number of calls made on 
humid nights. On warmer nights call attenuation is also likely 
to be high (Goerlitz 2018), and long-tailed bat call rates may 
be underestimated. We recommend, therefore, that weather 
variables are considered when attempting to infer changes in 
activity rates over time and that these are included in modelling 
or, at the very least, reported.

At what time of the night should I survey?
This work also gives a more granular picture of the time of 
night when monitoring may be most effective. While bats 
show diurnal cycles in activity, with activity peaking 120–180 
minutes after sunset at our site, environmental variables also 
play a role. The number of bat detections was highest while 
the temperature was between 8 and 17°C, and when there 
was a slight breeze. Based on data collected in Fiordland’s 
Eglinton Valley, where temperatures are cooler than our study 
site, O’Donnell (2000) recommended that surveys for long-
tailed bats should focus on the first two hours after sunset to 
maximise the chance of detecting bats. Our research, using data 
collected in the Central North Island, found detections peaked 
later in the night than in Fiordland. We suggest, therefore, that 
to deal with this variability between locations, survey periods 
be extended to include the first four hours after sunset, although 
surveys for entire nights remain highly recommended.

The findings of this study support O’Donnell’s (2000) 
caution that detectability of bats may vary between locations 
and situations. This study, therefore, contributes to developing 
national survey standards for long-tailed bats by determining 
patterns in bat detectability. However, a number of limitations 
should be kept in mind when interpreting these results. 
Firstly, these results are from one location over one year, 
and we stress caution extrapolating them to other regions 
of New Zealand. We encourage replication of this research 
to determine whether these trends are consistent across 
regions and years. Secondly, the data used in this analysis 
were collected using a protocol that specifically involved the 
avoidance of inclement weather. Further studies could explore 
the effects of high precipitation and wind on bat detectability. 
Thirdly, we did not test for interactions between environmental 
variables which may further explain peaks in bat detections. 
Finally, while this study shows that environmental variables 
can determine both whether, and how many, bat passes are 

recorded, zeroes were nevertheless also recorded across the 
full range of environmental conditions. Long-tailed bats are 
not always detected, even when the weather appears suitable. 
Consequently, single-night surveys are not appropriate for 
determining the presence or absence of long-tailed bats.

So why does long-tailed bat detection data contain so 
many zeroes, even during seemingly favourable conditions? 
Although seasonal changes in behaviour account for some of the 
variation, it does not account for all of it. Borkin and Parsons 
(2009) suggested that it is necessary to survey sites with ABMs 
for a minimum of three nights to enable a reasonable chance 
of detecting long-tailed bats at a given site and it has been 
suggested that this may be because long-tailed bats use different 
parts of their range on different nights. We found high odds of 
not detecting bats even though we knew bats were really present 
in our survey area (false zeros). Our results support extending 
surveys over longer periods, or repeating these, to be more 
confident survey results are accurate. If bats do use different 
parts of their home range on different nights, then personnel 
undertaking long-tailed bat surveys designed to determine 
whether bats are present at a location should deploy arrays 
of ABMs over much larger areas than are generally currently 
surveyed. The spatial extent of an ABM array should reflect the 
extent of possible movements of long-tailed bat social groups. 
Research would be required to determine the size and density 
of an ABM array, but once it has been determined, detection 
of long-tailed bats on any one of the ABMs within the array 
would count as a detection for the entire array. This would 
reduce the likelihood of non-detection of bats at sites where 
they are both present and active. For example, in Fiordland 
Nothofagus forest, 50 long-tailed bats from three social 
groups, with overlapping collective foraging areas, ranged 
over 11 700 hectares (O’Donnell 2001). In Kinleith Forest, 
individual long-tailed bat home range spans were as large as 
16 kilometres across (K Borkin, pers. obs). In this research, 
we placed ABMs over an area of approximately 16.5 × 14.0 
km. Clearly, arrays of ABMs (if collectively viewed as one 
monitoring unit) should reflect these scales of movements, 
otherwise monitoring lacks independence and is therefore 
pseudo-replicative.

Future research could benefit from consideration of other 
statistical methods and survey equipment. For example, it is 
also necessary to determine how many nights of surveying is 
required at optimal temperatures to be confident that bats are 
unlikely to be present if they are not detected. An approach 
such as occupancy modelling (MacKenzie et al. 2006) could be 
useful for this but would require a study that used successive 
repeat surveys of sites to collect data that could then be used 
to estimate a probability of detection. This would allow the 
use of the following equation to estimate the survey effort 
required to provide a given level of confidence of detecting 
long-tailed bats if they are present (Tyre et al. 2003):

(1−p)n

Where p is probability of detection and n is the number of 
surveys. It was not possible to use the data from Kinleith 
Forest in an occupancy analysis because data was collected 
once per month.

The use of passive acoustic recorders, which are relatively 
low cost, and easy-to-operate, has revolutionised bat surveys 
and monitoring in recent years (Kloepper et al. 2016). Acoustic 
recorders have been used to determine species presence, 
composition, and activity for a wide range of fauna including 
bats (Law et al. 2015), birds (Williams et al. 2018a; Metcalf 

(5)
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et  al. 2019), and marine mammals (Marques et  al. 2012). 
Occupancy modelling of data collected using acoustic recorders 
has also been suggested as a tool for other threatened vocal, 
or detectable, species (Metcalf et al. 2019). Law et al. (2015) 
considered that, for bats, where the number of calls recorded 
is low then occupancy may be a more reliable indicator of 
change in population than activity rates. However, care is 
required when analysing data as Wright et al. (2016) caution 
that inappropriate modelling resulting in incorrect inferences 
can be costly for conservation efforts, suggesting it is essential 
to use model assessment tools when using this method. We 
suggest that the use, and appropriateness, of occupancy 
modelling for New Zealand bats and other threatened species 
should be investigated further.

We analysed detection data for long-tailed bats collected 
over one year within Kinleith Forest and found that the 
detectability of bats was determined by several environmental 
variables. Our results provide nuance to earlier analyses by 
O’Donnell (2000) and Griffiths (2007) which found temperature 
to be important. In addition, we found correlations between 
bat detection rates and wind speed, precipitation, and relative 
humidity. We suggest that bat surveys focus on the first four 
hours after sunset, on nights when the temperature at sunset is 
above 8°C, and preferably when the temperature stays in the 8 
and 17°C range. Higher humidity and a light breeze may also 
be a desirable condition for surveying. A night that is similar 
to, or slightly warmer than, recent nights may be favourable. 
Survey periods should extend to at least the first four hours 
after sunset during nights when the weather is better than those 
previous, although surveying for entire nights remains highly 
recommended. Caution should be taken extrapolating these 
results to elsewhere because bats in other regions may respond 
differently to temperatures out of necessity. Long-tailed bat 
detection rates were highly variable even during apparently 
ideal conditions and we express caution in assuming bats are 
not present because they were not detected when using ABMs 
during a higher temperature or higher humidity night. In the 
central North Island and surrounding regions, several nights of 
surveying at these temperatures will be necessary to establish 
whether long-tailed bats are present. Given that the costs of 
sampling for longer periods using passive automated acoustic 
detectors do not increase substantially, apart from the costs 
of analyses (Skalak et al. 2012), provided no additional visits 
are required to replace batteries or download data, sampling 
over longer periods is recommended if populations are likely 
to be small or areas used infrequently. It would be useful to 
determine the number of survey nights needed to confirm bat 
presence or absence during suitable weather conditions. Such 
a study would require surveying to be undertaken over several 
nights in suitable conditions.
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