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Abstract: There is a lack of information about how elevation affects the distribution of ship rats in New Zealand. 
In this study, ship rats (Rattus rattus) were captured in traps set along a 2 km elevational transect (455–1585 
m a.s.l.) in beech (Nothofagaceae) forest and adjacent alpine tussock at Mt Misery, in Nelson Lakes National 
Park, from 1974 to 1993. A total of 118 rats were captured. In years with beech seed fall, upper range limits 
corresponded with the red beech forest (Fuscospora fusca) limit (~1030 m a.s.l.), with no rats caught above 
this line in the silver (Lophozonia menziesii) and mountain (F. cliffortioides) beech forest (1050–1408 m a.s.l.) 
or alpine zone (1425–1585 m a.s.l.). Binary generalised linear models indicated there is an indirect relationship 
between ship rat capture and temperature, as beech seed production, as well as decreasing elevation, were important 
predictors of rat capture. There was some evidence to suggest decreasing winter temperature and increasing 
annual precipitation also influenced ship rat capture and warrants further investigation. Our analyses provide 
an important insight into the drivers of ship rat elevational distribution, as well as providing a benchmark for 
comparing both current and future ship rat elevational distributions. Interrogation of more recent rat monitoring 
data from a range of beech forest types and sites is needed to test hypotheses around how warming temperatures, 
as predicted with climate change, will both directly and indirectly effect ship rat distribution. 
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Introduction

Ship rats (Rattus rattus) are habitat generalists, capable of 
occupying a wide range of habitats, although they tend to 
be more abundant in temperate regimes than cold temperate 
regions (Horskins et al. 1998; Lindsey et al. 1999; Wegmann 
et al. 2008). Ship rats are present in high elevation forest 
(1600–2000 m a.s.l.; Sugihara 1997) and shrublands (>2000 
m a.s.l.; Cole et al. 2000) in tropical Hawaii, but are also 
present in colder climates, such as Poa foliosa tussock 
grassland on the high latitude sub-antarctic Maquarie Island 
(Pye et al. 1999). In New Zealand ship rats occupy a wide 
range of habitats including exotic pasture (Innes et al. 2010), 
native forest (e.g. Smith et al. 2009; Christie et al. 2015), as 
well as sub-alpine and mānuka (Leptospermum scoparium) 
shrubland on Stewart Island (Harper et al. 2005). However, 
their distribution is far from uniform, with ship rats mostly 
absent from higher elevation, colder habitats, such as upland 
mountain beech (Fuscospora cliffortioides) forest and above 
the treeline in the alpine zone, while being more abundant in 
lowland forests (Studholme 2000; Harper et al. 2005; Christie 
et al. 2006). 

Ascertaining the role of temperature as a driver of ship 
rat elevational distribution is important. Studholme (2000) 
suggested ship rat elevational distribution is limited by a mid-
winter 2oC approximate mean monthly elevational isotherm. 
This is unproven, but Christie et al. (2009) noted ship rat 
capture probability increased in relation to increasing mid-
winter minimum temperature along an elevational gradient at 
a South Island beech forest site. Temperature also indirectly 
influences food availability in beech forest as beech seed 

production and invertebrate activity are both temperature 
linked (e.g. Wardle 1984; Schauber et al. 2002; Richardson et 
al. 2005). Years of high intensity beech seed production, known 
as a mast, significantly increase the available food for ship 
rats, resulting in a substantial increase in their numbers (King 
1983; King & Moller 1997; Dilks et al. 2003). Establishing 
whether there is a link between ship rat elevational distribution 
and temperature is important, because in the next 100 years 
temperatures are predicted to increase as a result of climate 
change (Mullan et al. 2016). A temperature-induced increase 
in ship rat elevational distribution may negatively impact 
native species that have persisted at higher elevations (Elliott 
et al. 2010) and are vulnerable to being preyed on by ship rats 
(Dilks et al. 2003; Innes 2005). 

Ascertaining whether a relationship between ship rat 
presence, elevation and temperature exists, requires datasets 
with a long temporal extent, collected across an elevational 
gradient. Information on historical patterns of ship rat 
distribution is also desirable, so that comparisons with current 
and future distributions can be made. Very few long-term 
records of ship rat capture programmes exist, especially prior 
to 1999. Records from sites such as Cupola Basin (RT, unpubl. 
data), Craigieburn (King & Moody 1982) and the Orongorongo 
Valley (Efford et al. 2006), suggest ship rats were rare or non-
existent in high elevation silver and mountain beech forest 
prior to 1999. However, trapping was generally for only short 
time periods and did not extend into the alpine zone (King 
& Moody 1982; Efford et al. 2006). A long-term study at Mt 
Misery (Wilson et al. 1998) summarised changes in the number 
of mouse and stoat captures across an elevational gradient 
in relation to beech seed production and season, between 
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1974 and 1993, but did not include ship rat capture results 
even though these data were collected. Since 1999, ship rats 
have been recorded as by-catch in stoat trapping operations 
in alpine habitats (O’Donnell et al. 2017), and analyses have 
shown a negative relationship between ship rats and increasing 
elevation (Christie et al. 2006). This relationship was evident 
at low elevation sites (i.e. 0–860 m a.s.l.; Christie et al. 2006), 
as well as high elevation mountainous sites such as the Haast 
Range (i.e. 20–1470 m a.s.l.; Christie et al. 2009).

The main objective of this paper is to identify the drivers of 
ship rat capture across an elevational gradient in a South Island 
beech forest. A second objective is to provide an historical (i.e. 
pre-1999) baseline for future analyses of the impacts of climate 
change on ship rat elevational distribution. Although it is worth 
noting that rat monitoring methods have changed since 1999, 
so these data are not directly quantitatively comparable with 
modern records. We summarise the previously unpublished 
ship rat capture data collected from Mt Misery between 1974 
and 1993 by Wilson et al. (1998). We use logistic regression 
to analyse the influence of elevation, beech seed production, 
mean winter temperature and precipitation on annual ship 
rat capture. 

Methods

Study area
Mt Misery is located between two glaciated valleys at the 
head of Lake Rotoroa in Nelson Lakes National Park, in the 
South Island of New Zealand (41°55’S, 172°39’E). The study 
site is a truncated spur on the north western side of the peak, 
encompassing cold-temperate southern beech (Nothofagaceae) 
rain-forest and alpine grasslands, from Lake Rotoroa (455 m 
a.s.l.) to the top of Mt Misery (1585 m a.s.l). The climate is 
cold and wet. At the nearby (~20 km northeast) Lake Rotoiti 
weather station (620 m a.s.l.) precipitation varied between 1100 
and 1900 mm per year. Mean daily maximum temperatures in 
summer range from 18.7° to 20.9°C, and in winter from 8.3° 
to 9.7°C. While mean daily minimum temperatures usually 
range from 7.5° to 8.4°C in summer and -1.9° to -0.6°C in 
winter (NIWA, unpubl. data). The vegetation along the trap 
line was classified into seven distinct elevational zones; silver 
(Lophozonia menziesii) / red (Fuscospora fusca) beech with 
podocarps (Podocarpaceae) (455–475 m a.s.l.); red / silver 
beech (485–515 m a.s.l.); red / silver beech with kāmahi 
(Weinmannia racemosa) (525–785 m a.s.l.); red / silver / 
mountain (F. cliffortioides) beech (805–1030 m a.s.l.); silver / 
mountain beech (1050–1340 m a.s.l.); mountain beech (1360–
1410 m a.s.l.); and tussock (Chionochloa spp.) (1425–1585 
m a.s.l.) (Elliott et al. 2010). Twenty 0.28 m2 trays were used 
to measure annual beech seed production every year except 
for 1986 and 1987 (Wilson et al. 1998).

Rat trapping
Ship rats were trapped on a single line containing 100 trap 
sites at 50 m intervals up a truncated spur (455–1585 m a.s.l.; 
Wilson et al. 1998). At each trap site, one mouse and one rat 
snap trap were set inside a metal tunnel with an entrance at 
each end. Traps were baited with a mixture of peanut butter 
and rolled oats, and set for three consecutive nights at the 
end of February (summer), May (autumn), August (winter) 
and November (spring) from May 1974 until February 1984. 
Between 1984 and 1990, the traps were only set in February 

and May 1986. Quarterly trapping resumed from February 
1990 until May 1993, but only for the traps below the tree 
line, with breaks occurring in May and August 1992. At every 
fourth trap site paired Fenn traps were set (i.e. 200 m spacing, 
25 paired sets in total) to trap stoats. These were set at the same 
time and for the same number of nights as the rat snap traps 
and also caught rats (Wilson et al. 1998). Because of the low 
number of captures, ship rat capture data from all three trap 
types were included in the analysis, even though these traps 
may vary in their effectiveness. 

Statistical analysis
Binary generalised linear models (Logistic Regression; Hosmer 
& Lemeshow 2000) were used to determine which variables 
(predictors) best explained probability of ship rat capture at 
each trap site by austral year (e.g. Aug 1974–May 1975) as a 
binary variable (response). Only trapping data from below the 
red beech line (1030 m a.s.l.) were used because no rats were 
caught above the red beech line so there was no information 
to model. The analyses were undertaken in R (version 3.2.1; R 
Development Core Team 2009) using the GLM package to fit 
the logistic regression models. Akaike’s Information Criterion 
(AIC) was used to determine which model was best supported 
by the data (Burnham & Anderson 2002). Values (∆AIC) are 
reported relative to the AIC of the best model, with models 
of ∆AIC ≤2 having substantial support. Model residuals were 
examined to determine how well the model fitted the data.

The analysis examined the possible effects of beech seed 
production, elevation, winter temperature and total annual 
precipitation on ship rat capture. Candidate models were 
chosen apriori from a set of available variables which were 
plausible to consider. These variables were screened to avoid 
highly correlated weather variables. To determine whether there 
were any elevation specific beech seed production and weather 
effects, interactions with elevation were included in the models. 
Sample effort was also included in the models, because some 
trapping surveys were not undertaken. This was recorded as 
the number of sample occasions to occur in an austral year 
(i.e. 1–4). Beech seed production is summarised as seeds per 
m2 from the preceding austral year, because it is the previous 
year’s seed production which affects the following year’s rat 
abundance (GE, unpubl. data). Elevation is reported as metres 
above sea level (m a.s.l.) of a trap site. Total precipitation was 
summarised by austral year (e.g. June 1974–July 1975) to 
correspond with the response variable. Winter temperatures 
were calculated as approximate mean monthly temperatures 
((mean Tmin + mean Tmax)/2) where Tmin is daily minimum and 
Tmax is daily maximum, and averaged across the three winter 
months of June, July and August at the beginning of each 
austral year period. Approximate mean monthly temperature 
is a better measure of enduring daily cold than mean monthly 
minimum temperature, and may have a greater effect on ship 
rats foraging for food (Studholme 2000). Temperature and 
precipitation data were from the Lake Rotoiti weather station 
(620 m a.s.l.) ~20 km to the northeast of Mt Misery and taken 
from the New Zealand National Climate Database (National 
Institute of Water and Atmospheric Research; see http://cliflo.
niwa.co.nz). The Lake Rotoiti weather station is near enough to 
Mt Misery to allow conclusions to be drawn about the effects 
of relative change in temperature and precipitation.  



115Christie et al.: How elevation affects ship rat capture patterns

Results

A total of 118 ship rats were captured between 1974 and 1993. 
Only small numbers of ship rats were captured each year, and 
captures varied among years (range = 3–15 rats; Fig. 1a). Annual 
beech seed production also varied among years (Fig. 1b), with 
no full masts (>4000 seeds per m2; Wardle 1984) detected in 
the 18 years of beech seed records. There were only 2 years 
with partial masts (500–4000 seeds per m2), 7 years with poor 
masts (<500 seeds per m2), and 9 years with no seed production 
(Fig. 1b). In the 15 years with both rat capture and beech seed 
production data, higher numbers of rats were captured in the 
austral year directly following a year with beech seed (mean 
= 10.7 ± 4.9, n = 7 years), compared to years where no beech 
seed was produced in the preceding year (mean = 5.4 ± 3.0, 
n = 8 years). The elevation of capture also varied according 
to whether beech seed had been produced, with more ship 
rats captured and at higher elevations in years with beech 
seed produced (Fig. 2). No ship rats were captured above the 
red beech elevational limit (approx. 1030 m a.s.l.; Fig. 2), so 
they were not detected in the higher elevation mountain and 
silver beech forest (1050–1410 m a.s.l.), and alpine habitats 
(1425–1585 m a.s.l.). 

Influences on ship rat captures 
The two best-supported models for ship rat capture included 

Figure 1. Summary of (a) quarterly totals of ship rats captured and (b) annual beech seed production at Mt Misery from 1974–1993. 
Missing points on the graphs denote periods when no data were collected.

beech seed production, elevation, winter temperature and total 
annual precipitation (Table 1). No evidence was found for an 
elevational specific effect of beech seed production, winter 
temperature or total annual precipitation. There was also no 
evidence for sample effort having an effect on rat capture 
in the model. According to the best two models (Table 2), 
rat capture was strongly influenced by the positive effects 
of beech seed production, as well as the negative effect of 
increasing elevation. Model 1 also suggests there was some 
evidence to show that the negative effects of increasing winter 
temperatures, as well as total annual precipitation, may also 
influence rat capture. This indicates further investigation into 
the effects of winter temperatures and precipitation on ship rat 
capture is warranted. No patterns were evident in the model 
residuals suggesting that both models fitted the data to an 
acceptable level.

Discussion

At Mt Misery no ship rats were caught above the red beech 
tree elevational limit (~1030 m a.s.l.) despite extensive long 
term trapping. This is consistent with evidence that ship rats 
are absent from alpine habitats in New Zealand (Studholme 
2000; Innes 2005). In a concurrent study at Mt Misery, declines 
in common bird abundance at low elevations in comparison to 
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high elevations were linked to elevational variation in invasive 
species distribution (Elliott et al. 2010). Ship rats are habitat 
generalists (e.g. Cox et al. 2000; Harper et al. 2005; Innes et al. 
2010), and based on previous records in these types of habitats 
(e.g. Pye et al. 1999) are capable of occupying high elevation 
silver and mountain beech forest and alpine tussock. Ship rats 
live entirely in silver tussock grassland on the sub-antarctic 
Macquarie Island (Pye et al. 1999) and recent anecdotal 
evidence from trapping operations suggests they are present 
in the New Zealand alpine zone at certain sites (O’Donnell 
et al. 2017) which would be comparable ecologically with 
Mt Misery. Furthermore, male ship rats have been recorded 
moving distances of up to 790 m in a night in beech forest 
(Pryde et al. 2005), so should be capable of living in the forest 
and commuting into the alpine zone. Overseas, while ship rats 
tend to be more abundant in temperate locations (Horskins et 
al. 1998; Lindsey et al. 1999; Wegmann et al. 2008), they are 
also present in cold climatic zones like Macquarie Island where 
mean annual temperature is 4.9°C (Australian Government 
Bureau of Meteorology, unpubl. data). These temperatures 
are not dissimilar to the New Zealand upper beech forest and 
alpine habitats where mean annual temperature range between 
3.5° to 10.5°C for mountain beech (Leathwick 1998) and 4.7° 
and 6.4°C at the tree line (Cieraad & McGlone 2014). This 
suggests either other temperature metrics not captured by this 
study or factors other than temperature may also influence ship 

Figure 2. Number of ship rats captured per trap by 
elevational zone (m a.s.l.) at Mt Misery from 1974–1993 
in relation to beech seeding. Number of rat captures per 
trap are summarised by 100 m elevational zones.

Table 1. Logistic regression models of ship rat capture probability at Mt Misery in relation to sampling effort (effort), annual beech 
seed (seeds), elevation (m a.s.l.), approximate mean monthly winter temperature (winter temperature) and total annual precipitation 
(precipitation). In model notation, + indicates an additive effect on the logit scale and × an interaction. K is the number of parameters 
estimated; AIC is the Akaike Information Criterion value of the fitted model; ∆ is the AIC value relative to the best model; w is the Akaike 
weight which is a rescaling of model likelihood used as a measure of relative support of the data for the models. 
__________________________________________________________________________________________________________________________________________________________________

Model K AIC ∆ w
__________________________________________________________________________________________________________________________________________________________________

None 1 634.97 24.76 0.00
Effort 2 634.27 24.06 0.00
Seeds 2 620.84 10.63 0.00 
Elevation 2 625.70 15.48 0.00
Elevation + seeds 3 611.31 1.10 0.32
Elevation × seeds 4 613.20 2.98 0.12
Elevation × winter temperature 4 625.51 15.30 0.00
Elevation × precipitation 4 629.56 19.34 0.00
Elevation + seeds + winter temperature + precipitation 5 610.21 0.00 0.55
__________________________________________________________________________________________________________________________________________________________________

Table 2. Model estimates for the two best logistic regression 
models for ship rat capture. 
____________________________________________________________________________

Model and variable Slope SE z P
____________________________________________________________________________

Model 1
Intercept 2.673 1.668 1.602 0.109
Elevation -0.002 0.001 -3.215 0.001
Seeds 0.001 0.000 4.252 <0.001
Winter temperature -0.479 0.285 -1.683 0.092
Precipitation -0.001 0.001 -1.752 0.080

Model 2 
Intercept -0.911 0.414 - 2 . 1 9 9  
0.028 
Elevation -0.002 0.001 -3.202 0.001
Seeds 0.001 0.000 4.232 <0.001
____________________________________________________________________________
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rat elevational distribution in New Zealand. Below we discuss 
the effect of beech seeding, elevation, winter temperature and 
precipitation on ship rat distribution. 

There was strong support for an effect of beech seed on ship 
rat capture. More ship rats were captured in years following 
beech seed production at Mt Misery, and Wilson et al. (1998) 
noted corresponding periodic increases in mice and stoats. 
Beech seed production is episodic, with large seeding events 
known as masts (Wardle 1984). Between 1974 and 1993 at Mt 
Misery there were no full masts, only partial and poor masts 
(Wardle 1984), but a rat response was still evident, suggesting 
ship rats are able to respond to even small amounts of beech 
seed production. Furthermore, a full mast was recorded at Mt 
Misery in 2000 (Department of Conservation, unpubl. data), 
so the small amounts of seed recorded over the trapping study 
period were not an artefact of the sampling method. Similar 
increases in rat abundance after beech seeding have been 
recorded elsewhere in New Zealand (Blackwell et al. 2001; 
Dilks et al. 2003), and suggest a strong influence of food 
supply on ship rat populations. 

Elevation was the other important predictor of ship capture, 
with rat capture decreasing with elevation. Other recent studies 
have found a similar relationship (Christie et al. 2006, 2009). 
While there was no evidence for elevation specific effects of 
beech seed production in our analysis, this may have been 
because the beech seed production data for Mt Misery were 
not classified by elevation. However, a relationship between 
ship rats, beech seed and elevation is not surprising since the 
frequency and magnitude of beech seed production (Wardle 
1984; Richardson et al. 2005), and invertebrate diversity 
decrease with elevation (Moeed & Meads 1985; Beggs 1991). 
Beech seed and invertebrates are both important food items 
for ship rats (Innes 1979; Blackwell et al. 2001; Sweetapple 
& Nugent 2007; Murphy & Maddigan 2008). Teasing out the 
proximate drivers of ship rat elevational distribution is difficult 
because bird abundance (Elliott et al. 2010), temperature 
(Studholme 2000; Christie et al. 2009) and under-storey 
diversity (Wardle 1984) all decrease with elevation as well 
and potentially influence ship rat distribution. 

Predictions that ship rats would be limited at higher 
elevations in beech forest by mid-winter temperatures 
(Studholme 2000; Christie et al. 2009) were not supported by 
our models, but this may have been because our model was 
limited to traps below the red beech elevational limit. Our 
models showed some support for ship rat capture increasing 
when temperatures were colder than average, irrespective of 
the presence of beech seed production. This increase may 
reflect an increase in probability of capture as temperatures 
get colder, rather than an increase in rats per se. Similarly, 
increased ship rat capture with higher rainfall also may reflect 
increasing probability of capture, rather than abundance. Ship 
rats are relatively small mammals, with a fast metabolism 
(Innes 2005), so colder than average winter temperatures or 
wet conditions may increase their food requirements, and make 
them more likely to enter a baited trap. Efford et al. (2006) 
attributed increased winter capture rates to an increase in 
capture probability of autumn born rats. Alterio et al. (1999) 
also noted an increase in ship rat capture rates at a beech forest 
site in late winter followed by a decrease in spring but did not 
relate this to temperature or probability of capture. 

While this study did not find any evidence to support the 
prediction that winter temperature limits ship rat capture, we 
speculate that temperature may still have an indirect effect 
on ship rat distribution. This is because temperature may 

indirectly influence ship rat abundance through its effect on 
invertebrate activity and beech seed production frequency 
and magnitude. Invertebrate activity increases with warming 
temperatures (Moeed & Meads 1985, 1986). Invertebrates are a 
big component of ship rat diet in beech forest especially when 
beech seed is not available (McQueen & Lawrence 2008). 
Seasonal peaks in ship rat upper range limits in summer and 
autumn also coincide with peak invertebrate activity (Moeed 
& Meads 1985, 1986). Furthermore, beech seed production 
is an important driver of ship rat capture patterns and is also 
temperature linked, with warmer temperatures linked to 
increased beech seed production frequency and volume at 
higher elevations (Schauber et al. 2002; Richardson et al. 2005). 

Our analyses of the historical ship rat data from Mt 
Misery over the 19-year study provide an insight into which 
variables might be important for predicting ship rat elevational 
distribution, as well as providing a benchmark for comparing 
both current and future ship rat elevational distributions. The 
results of this study suggest there may be an indirect relationship 
between ship rat capture and temperature. Strong support for the 
effects of beech seed production, as well as elevation on ship 
rat capture, suggests temperature may play an indirect role in 
ship rat distribution along an elevational gradient. Furthermore, 
evidence from our models suggest winter temperature, as well 
as annual rainfall, while less important, may also influence ship 
rat capture and requires further investigation. Therefore, rising 
temperatures, as predicted with climate change (Mullan et al. 
2016) may result in changes in ship rat elevational distribution, 
especially if beech seed production increases upslope as the 
climate warms (Richardson et al. 2005). Rat monitoring data 
from a range of elevations and associated with different beech 
forest types and sites, are needed to test hypotheses around 
how warming temperatures will both directly and indirectly 
effect ship rat distribution. 
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