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Abstract: To effectively monitor bird populations, accurate identification of species is critical. However, the 
reliability of species identification is rarely taken into account or quantified. For this study, bird call data was 
collected using automated acoustic recording devices (ARDs) over a 3-year period. We then compared the results 
from experienced ornithologists who independently identified bird calls from the same samples. Results were 
highly variable. The level of agreement between processors on identification for some species was high (e.g. 
tomtit Petroica macrocephala, 85.1%), whilst for others it was considerably lower (e.g. song thrush Turdus 
philomelos, 23.5%). There was no statistically significant difference in agreement between native and non-native 
species. However, there was some evidence for improvement in agreement for the third survey season, when 
compared to the first. In a more specific comparison of bellbird Anthornis melanura and tui Prosthemadera 
novaeseelandiae calls, our results showed that these two species were frequently confused. There were many 
instances where only one of the processors identified a species. Possible explanations for why calls were missed 
include differences in hearing ability and levels of concentration between processors, whilst false positives 
could have resulted from confirmation bias. These results have implications not only for data collected using 
recording devices but also field-based counts of birds conducted by observers. 
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Introduction

‘There are three stages to learning bellbird and tūī call 
identification: (1) you can’t tell them apart; (2) you think you 
can tell them apart; (3) you realise that you can’t tell them 
apart’ – Anon.

Robust and accurate monitoring tools are essential for 
measuring changes in population abundance or distribution, 
particularly when assessing effectiveness of management 
actions. Commonly used bird survey methods, particularly in 
forest habitats, rely on identification of vocalisations of the 
species of interest (Dawson & Bull 1975; DeJong & Emlen 
1985). With practice, many birds can be reliably identified from 
their calls, however some species are difficult to identify with 
certainty, as they sound similar to other species (e.g. bellbird 
Anthornis melanura and tūī Prosthemadera novaeseelandiae). 
Confidence in data quality is essential if the information is to 
be used to inform effective conservation decision-making, but 
there are few cases where the accuracy of the data is quantified 
(for examples, see Alldredge et al. 2007; Simons et al. 2007). 

The use of automated acoustic recording devices (ARDs) 
for detecting birds and other animals has increased rapidly 
in recent years (Steer 2010; Frick 2013). Technological 
developments and increased interest in the potential of 
ARDs have resulted in production of a range of devices and 
systems providing various options for monitoring (Brandes 
2008; Frick 2013). Advantages include the ability to estimate 
the number of species present at many sites simultaneously, 
the generation of a permanent and reviewable record over 
prolonged time periods, minimal disturbance to wildlife and 
the ability to sample the audible soundscape 24 hours per day 
(Haselmayer & Quinn 2000; Acevedo et al. 2006; Steer 2010). 
Despite these obvious benefits, particularly the potential of 

more accurate identification, the process of converting sound 
recording into useable data remains a largely manual task that 
can be protracted and costly (Swiston & Mennill 2009). The 
application of automated call recognition to acoustic recordings 
remains problematic despite being the subject of much recent 
research (e.g. Chou et al. 2008; Bardeli et al. 2010; Chu & 
Blumstein 2011; Lopes et al. 2011). The absence of a readily 
applicable solution continues to hamper the wider adoption 
of the methodology to intensive and large-scale monitoring 
programmes.

This study examines the issues of uncertainty around 
identification of bird calls, using recordings from ARDs 
processed by different experienced ornithologists or 
‘processors’. The data were collected through the National 
Biodiversity Monitoring and Reporting System, administered 
by the Department of Conservation (DOC). The Tier 1 
Monitoring Programme underpins this project and provides 
biodiversity data to enable reporting on the national status 
and trend for common and widespread species (Lee et al. 
2005). For birds, observer counts and ARD monitoring were 
implemented concurrently to test efficacy and determine 
which method was most appropriate for the programme. This 
study used data gathered during the first three field seasons 
(2011/12, 2012/13 and 2013/14) to determine the extent of 
processor agreement and disagreement in terms of species 
identification, and quantifies the uncertainty. Two endemic 
honeyeater species, bellbird and tūī, were then investigated 
in more detail. The calls of these two species can be very 
similar (Falla et al. 1966) and are often confused (Scofield & 
Stephenson 2013).
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Materials and methods

The Tier 1 Monitoring Programme is based upon an 8 km 
grid across New Zealand, from which a random selection 
of locations is surveyed. At each grid intersection on Public 
Conservation Lands, a 20 x 20 m vegetation plot is measured 
following the method described in Hurst and Allen (2007). 
Mammals (e.g. possum Trichosurus vulpecula; deer Cervus 
spp., Dama dama dama and Odocoileus virginianus borealis; 
European rabbit Oryctolagus cuniculus; and brown hare 
Lepus europaeus) are monitored using transects that radiate 
from each of the four vegetation plot corners, to a distance 
of 200 m. At the end of each transect and in the centre of the 
vegetation plot there is a bird count station (five in total for 
each Tier 1 plot; Figure 1). A single ARD is deployed at each 
count station to record audio continuously for one nocturnal 
time period (2000–0600 hrs) and one diurnal time period 
(0700–1300 hrs); see MacLeod et al. (2012).

ARDs were developed and designed by DOC, each 
incorporating 4 x wm61a electret microphones in parallel with 
a foam ‘pop filter’ and custom-made low noise pre-amplifier 
with a DSP anti-aliasing filter. Recordings were saved to Secure 
Digital (SD) memory card as a series of uncompressed 32 kHz, 
16-bit audio files in waveform audio file format (‘.WAV’ file 
extension) with a bit-rate of 512 kbps, each approximately 
15 minutes in length.

In total, a maximum of 80 hours of recordings could 
potentially be generated for each Tier 1 plot. In practice it 
was often less than this number, due to either (1) technical 
issues with ARDs; or (2) station abandonment resulting from 
safety concerns or excessive environmental noise. Even so, 
many hours of recordings were generated. To make processing 
manageable in terms of time and cost, only a small proportion 
of audio recordings were selected for processing, i.e. two 
5-minute diurnal count periods for each bird count station (one 
to coincide with the field observer bird count and one additional 
from around 0900 hrs), plus one 15-minute nocturnal period for 
every hour between official New Zealand sunset and sunrise, 
per bird count station. Excessively noisy audio recordings 
(e.g. from wind, rain, or other unwanted environmental noise) 
were excluded from processing.

There was no formal method of assessing the bird 
identification abilities of processors in this study; however, all 
processors were considered competent at bird call identification, 

having completed numerous field surveys for birds in New 
Zealand in recent years. Everyone received training in the 
use of the processing software prior to beginning work on 
the project. Eleven processors were involved, five of whom 
processed recordings from all three survey seasons. Five-minute 
count periods were randomly assigned, then processed using 
the custom-designed Freebird bird call analysis software, 
version 1.1.6.4 (Freebird 2013). This software generated 
sonograms from the ARD recordings and allowed audio 
playback for identification. Processors used Sennheiser HD 
205 headphones, with a frequency response of 14-20000 Hz, 
to listen to recordings. Once a bird call had been identified, it 
was then tagged with the species name from a drop-down list. 
For diurnal audio recordings, the processor identified presence 
of each species within consecutive 10-second blocks of time 
(i.e. a species would not be tagged more than once within the 
same 10-second block). Each 5-minute count period therefore 
consisted of thirty 10-second blocks in which the presence of 
bird species was recorded. In an attempt to limit the effects of 
fatigue, processors were advised not to spend more than 20–25 
hours per week processing recordings. Upon completion of 
processing each audio recording, the results were exported in 
comma separated values (CSV) format. The CSV files were 
later aggregated for analysis to compare species detection/
non-detection between data from ARDs and field observers 
(the subject of a separate study, in preparation).

During the first three Tier 1 monitoring survey seasons 
(2011/12, 2012/13 and 2013/14), ARD recordings were 
collected from 83, 93 and 279 plots respectively, which resulted 
in a total of 2924 5-minute diurnal count periods processed. 
For the purposes of this study, a small proportion of the diurnal 
audio recordings (about 7%) was randomly selected and re-
processed by another processor (i.e. selected recordings were 
processed independently by two individuals). The 79 Tier 1 
plots that were included in this study ranged across New Zealand 
from the Coromandel Peninsula to Stewart Island (Figure 2).

Figure 1. Tier 1 Monitoring Programme plot design. ARDs were 
located at bird count stations.

Figure 2. Locations of Tier 1 Monitoring Programme plots for 
which recordings were processed independently by two individuals 
(2011/12, 2012/13 and 2013/14 survey seasons). 
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All analyses were carried out using the R statistical 
software package, version 3.1.2 (R Core Team 2013). Unless 
otherwise stated, agreement between processors was calculated 
per 5-minute count period, with the rationale that this was 
probably most useful as studies commonly collect data at 
this resolution. To test effects of resolution on agreement, 
data from the 10-second block resolution were aggregated to 
provide ‘recorded/not recorded’ per 5-minute count period. 
These data were then aggregated again to provide ‘recorded/
not recorded’ per Tier 1 plot, and included all 5-minute count 
periods processed for a plot. The number of 5-minute count 
periods processed per plot was variable (mean 7.2 ± 0.95 
SEM). This aggregation provided data on agreement at three 
resolutions. The sensitivity of resolution was only assessed for 
2012/13 due to the method of sample selection for this survey 
season (Tier 1 plots were randomly selected for processing, 
rather than 5-minute count periods). To avoid effects of small 
sample sizes, species recorded in less than 10% of 5-minute 
count periods were excluded from this analysis. For all other 
analyses, species recorded in less than 5% of 5-minute count 
periods were excluded to avoid effects of small sample sizes. 

To calculate agreement between processors for each 
species, each row of data was classified as a binary response 
variable (1 = both processors recorded the species, 0 = only 
one processor recorded the species, excluding those not 
recorded by either processor). The data were then modelled 
using logistic regression, assuming a binomially distributed 
error structure. Species (Sp) and Season (Sn) were included 
as explanatory categorical variables in the model formula:

Logit[π(y)] = β1Sp + β2Sn              (1)

where π(y) was the probability that y was 1 (both processors 
agreed the species was present), given fixed values of 
the explanatory variables. Coefficient estimates and 95% 
confidence intervals were converted back from the log to the 
original scale, to provide predicted percentage agreement 
with associated error for each species. The first survey season 
(2011/12) was taken as the reference season. ‘Processor pairs’ 
was also considered as an explanatory variable in the above 
model. Diagnostic plots compared Pearson’s residuals to fitted 
values and variables included and not included in the model, 
and the data were tested for over-dispersion (Zuur et al. 2013). 
Species status (native or non-native) and resolution (10-second 
block, 5-minute count period and Tier 1 plot) were tested for 
significant differences using one-way ANOVA F tests.

Table 1. Possible outcomes for each bird call tagged ‘bellbird’ 
or ‘tūī’, in a comparison of honeyeater identification.
____________________________________________________________________________

Outcome Description
____________________________________________________________________________

Same identification Both processors agreed on   
 identification.
Different identification Both processors tagged the call but  
 with different identifications.
Tagged by only 1  One processor tagged the call as 
processor bellbird or tūī, whilst the other  
 processor did not tag the call.
Identified by only 1  One processor tagged the call as 
processor bellbird or tūī, whereas the other 
 processor tagged the call as   
 ‘unidentifiable’.
____________________________________________________________________________

Table 2. Number of data points for each resolution within 
each survey season.
_____________________________________________
Resolution Data points
 2011/12 2012/13 2013/14 All survey  
    seasons
____________________________________________________________________________

10-second  2130 3090 990 6210 
block 
5-minute count  71 103 33 207 
period 
Tier 1 plot na 10 na 10
____________________________________________________________________________

Separate analysis was carried out for the commonly-
encountered honeyeaters (i.e. bellbird and tūī). For this, the 
audio recordings for processors 1 and 2 were opened side-by-
side in Freebird, and tagged calls directly compared. For each 
bellbird or tūī tag, one of four outcomes was recorded (Table 1). 

Results

General species comparison
In total, 207 5-minute count periods were processed; a mean 
of 37.62 (± 6.62 SEM) per processor. These comprised a total 
of 6210 10-second blocks (Table 2), which equates to 17.25 
hours of recordings. For all 5-minute count periods (across 
all survey seasons), the ratio of agreement to disagreement 
was 56.1:43.9%. Agreement scores varied considerably 
between species (Fig. 3), with lowest from song thrush 
Turdus philomelos (23.5%) and highest from tomtit Petroica 
macrocephala (85.1%). Bellbird was the most commonly-
recorded species, being identified by at least one processor 
in more plots than any other species, and had agreement of 
67.3%. Several native species had relatively low processor 
agreement (<50%; fantail Rhipidura fuliginosa, tūī and 
whitehead Mohoua albicilla). Generally, native species had 
higher agreement (mean 60.4%) than introduced species (mean 
46.8%), although this was not significantly higher (F (1,17) = 
2.47, p = 0.134).

Logistic regression results for the effect of season provided 
some evidence that processor agreement improved in the 
2013/14 survey season, compared to the 2011/12 survey season 
(2011/12: 50.0% agreement; 2013/14: 60.4% agreement; 
significant at the 5% level, p = 0.047). The effect of season 
varied for different species. Processor pairs was removed 
from the model, as this variable did not have any significant 
effect on agreement. Diagnostics did not indicate any potential 
problems with the model.

Mean agreement between processors increased as 
resolution decreased (Fig. 4), although there was a large degree 
of overlap in 95% confidence intervals and the difference 
between resolutions was not significant (F(2,21) = 1.802, p = 
0.19). Several species attained 100% agreement at the Tier 1 
plot resolution (New Zealand pipit Anthus novaeseelandiae, 
rifleman Acanthisitta chloris, silvereye Zosterops lateralis and 
tomtit). No species reached 100% agreement at the 10-second 
block or 5-minute count period resolutions. 
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Figure 3. Predicted percentage agreement, from logistic regression, between processors at the 5-minute count period resolution (±95% 
confidence intervals), for species recorded in at least 5% of count periods. n = number of count periods in which the species was recorded 
by at least one processor.

Figure 4. Changes in mean percentage agreement (±95% 
confidence intervals) between processors at different resolutions: 
10-second block, 5-minute count period and Tier 1 plot (2012/13 
season only). Data include species recorded in at least 10% of 
counts: bellbird, chaffinch, grey warbler, New Zealand pipit, 
rifleman, silvereye, skylark and tomtit. 

Honeyeater comparison
Direct comparison of bellbird and tūī showed that in only 
40.7% of cases for bellbirds and an even lower 13.5% of cases 
for tūī did processors’ identification agree (Table 3). Processor 
agreement was higher when bellbird and tūī were aggregated 
together into ‘honeyeaters’ (62.4%), due to the majority 
(82.1%) of tags with the outcome ‘different identification’ 
being identified as bellbird by one processor and tūī by the 
other. The remaining 17.9% of tags with the outcome ‘different 
identification’ were identified by one processor as either 
Australian magpie Gymnorhina tibicen, blackbird Turdus 
merula, chaffinch Fringilla coelebs, grey warbler Gerygone 
igata, kākā Nestor meridionalis, silvereye, starling Sturnus 
vulgaris or tomtit. The outcome ‘tagged by only one processor’ 
accounted for a large proportion of cases (bellbird 27.1%, tūī 
22.8%, honeyeater 31.6%). To assess what effect differences 
in identification had on species distributions, each Tier 1 
plot was assigned a 1 (if recorded) or 0 (not recorded) for 
bellbird, tūī and honeyeater, for each processor. For bellbird, 
the percentage of plots on which this species was recorded 
was similar between processors one and two, at 84.6% and 
89.7% respectively (Table 4). However, there were differences 
in which plots bellbirds were detected, resulting in 74.4% 
overall agreement. For tūī, overall agreement was lower, 
at 50%. When bellbird and tūī records were combined into 
‘honeyeaters’, both processors recorded presence at 92.3% of 
plots, with overall agreement of 84.6% (approximately 10% 
higher than bellbird, and 34% higher than tūī).
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Table 3. Summary of identification outcomes for calls 
identified by at least one processor as bellbird or tūī.
____________________________________________________________________________

Outcome  % of tags

 Bellbird Tūī Honeyeater
____________________________________________________________________________

Same identification 40.7 13.5 62.4
Different  30.9 62.6 4.5 
identification 
Tagged by only  27.1 22.8 31.6 
one processor 
Identified by only  1.3 1.2 1.6 
one processor
____________________________________________________________________________

Table 4. Agreement between processors on presence per 
plot, for bellbird, tūī and honeyeaters (bellbird and tūī 
combined).
____________________________________________________________________________

Species/species  % plots  %  
group recorded agreement

 Processor 1 Processor 2
____________________________________________________________________________

Bellbird 84.6 89.7 74.4
Tūī 43.6 25.6 50.0
Honeyeaters 92.3 92.3 84.6
____________________________________________________________________________

Discussion

This study has highlighted varying levels of agreement/
disagreement, and therefore uncertainty, concerning species 
identification from bird calls. The four highest scoring species 
(at the 5-minute count period resolution) were grey warbler, 
silvereye, skylark Alauda arvensis and tomtit, all with higher 
than 70% agreement. These species are generally common 
and widespread in New Zealand (Robertson et al. 2007) and 
have calls that are easily recognisable. However, despite their 
familiarity and distinctive calls, these species still had lower 
than expected levels of agreement. The four lowest scoring 
species were redpoll Carduelis flammea, song thrush, tūī 
and whitehead, all with lower than 35% agreement. This 
result suggests that calls of these species were most difficult 
to identify, presumably due to other species having similar 
vocalisations or lack of processor familiarity with regional 
call variations. For example, some redpoll calls may have 
been confused with other finch species such as greenfinch 
Carduelis chloris, goldfinch C. carduelis or chaffinch, 
whilst song thrush may have been confused with blackbird, 
and tūī with bellbird. In a study of avian detection by field 
observers in the USA, Simons et al. (2007) reported that 
misidentification rates were highest among species with similar 
calls. It is perhaps more difficult to explain why agreement 
was low for whitehead, as there are no obvious candidates for 
confusion. Several studies have revealed regional variation 
in vocalisations of a number of species, including bellbird 
(Brunton & Li 2006), tūī (Bergquist 1989; Hill 2011), North 
Island saddleback Philesturnus rufusater (Parker et al. 2012) 
and kea Nestor notabilis (Bond & Diamond 2005). Such 
variation may lead to misidentifications, as a person familiar 
with calls from one geographical region may not recognise 
calls from another.  An additional factor that may account for 
variation between processors is data entry error, which in the 

context of this study would involve accidentally choosing the 
wrong species when tagging a call in Freebird. For example, 
‘Redpoll’ may be selected instead of ‘Rifleman’ or vice versa, 
as these species appear next to each other on the species list. 
Data quality checks for this study suggested that data entry 
error was random and occurred infrequently. Implementation 
of an appropriate quality assurance process is recommended 
to minimise this type of error.

Not surprisingly, there was a general increase in percentage 
agreement between processors as the resolution decreased 
(i.e. from 10-second block to the Tier 1 plot). As resolution 
decreased, the amount of time processed increased, from 10 
seconds (10-second block resolution), to 5 minutes (5-minute 
count period resolution), to anywhere between 5 and 50 
minutes (Tier 1 plot resolution) depending upon how many 
5-minute count periods were processed for a particular plot. 
This indicates that for detection/non-detection data, longer 
time periods are preferable to shorter time periods for attaining 
higher levels of agreement and therefore confidence in accuracy 
of identifications. This provides some justification in the Tier 
1 Monitoring Programme for treating the plot as the sample 
unit, with multiple 5-minute count periods processed per plot.

There was some evidence of an increase in processor 
agreement in subsequent seasons, however because there were 
some changes in processors employed between survey seasons, 
it is impossible to determine the cause of improvement. It may 
be due partly to feedback received on results, however this was 
limited. Regular and detailed feedback, especially concerning 
commonly confused species pairs or groups, may lead to higher 
levels of agreement in subsequent survey seasons, providing 
the same staff are employed. We recommend that feedback to 
processors is considered and factored into any multi-season 
programme involving processing of acoustic recordings. One 
example of a format in which feedback could be provided is 
via production of guides to distinguishing between frequently 
confused species pairs or groups.

The results of the processor comparison for honeyeaters 
re-confirmed that bellbird and tūī were commonly confused, 
presumably because of their similar-sounding calls and the 
tūī’s mimicry habits (Robertson 1996; Hill 2011). The lower 
tūī agreement score may suggest a tendency by processors 
to choose bellbird rather than tūī when making a decision on 
identification. Perhaps when uncertain, and when listening 
to recordings from geographic locations where both species 
commonly occur, processors more frequently chose bellbird, 
as this species is generally considered more abundant and 
widespread than tūī, and may be less seasonally mobile 
(Heather & Robertson 2000). Although agreement between 
processors was relatively low when bellbird and tūī were 
considered individually, when identifications were combined 
into ‘honeyeaters’, agreement was considerably higher. This 
trend suggests that processors agree on most occasions that 
a honeyeater is calling, though often disagree on which 
honeyeater species it is. Although bellbird and tūī vocalisations 
have been the subject of several scientific studies (e.g. Brunton 
& Li 2006; Hill 2011; Hill et al. 2013), to our knowledge no 
studies to date have directly compared the call characteristics 
of these two species to provide assistance with identification. 
Clearly more work is required in this area and would hopefully 
provide field workers with techniques for distinguishing 
between calls of the two species. In the meantime, consideration 
could be given to aggregating certain species into pairs or 
groups with similar calls. Other than honeyeaters, other possible 
groupings could include the Turdine species (blackbird and 
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song thrush) and finches (chaffinch, greenfinch, goldfinch and 
redpoll). It may still be desirable to analyse the data for each 
individual species, however, it is important to acknowledge that 
some species identifications may be less certain and reliable 
and by grouping similar-sounding species this uncertainty is 
likely to be reduced. Grouping species together for analysis 
may reduce the usefulness of the data, but this will depend 
upon the level of uncertainty and the question(s) the data are 
being used to address. Therefore, for some groups it could still 
potentially be used for conservation benefit. For example, the 
introduced common wasp Vespula vulgaris has been shown 
to have negative impacts on bellbird and tūī populations in 
beech forests by depleting the honeydew resource (Beggs 
2001). Wasp control in these areas would benefit both bird 
species and therefore monitoring ‘honeyeaters’ (rather than 
incorrectly identified individual species) could materially help 
inform the degree of management success.

A large proportion of bellbird/tūī disagreement arose 
from species being tagged by only one processor. There 
are two potential explanations for this occurring. The first 
possibility is that one of the processors did not tag the 
call because they did not hear it, due to hearing ability or 
concentration levels. If this is indeed the case and occurs 
more widely, for species other than bellbird and tūī, it suggests 
that levels of agreement/disagreement not only depend upon 
bird identification experience, but also other factors such as 
fatigue or an individual’s hearing frequency range. For those 
involved in this type of work, hearing should be regularly 
tested by an audiologist, and ability taken into account when 
analysing results. To minimise effects of fatigue, processors 
should be set maximum hours per processing session and per 
week. The second possibility is that one of the processors 
tagged a non-existent call, due to confirmation bias. Also 
known as expectation bias, this is a type of cognitive bias 
whereby an observer subconsciously searches for information 
that will confirm their thinking, which may in turn lead to the 
psychological phenomenon known as pareidolia – the imagined 
perception of a pattern where it is not actually present (Gray 
2007). This can result in the recording of false-positives, such 
as identification of bird calls that are not in fact present. There 
may be no way to prevent occurrence completely, however 
simply having an awareness is likely to help an individual 
avoid this bias.

ARDs have a number of advantages compared to field 
observers, however, they are not without their limitations. 
Context can be extremely important for bird identifications 
and, in combination with the observer’s experience, can heavily 
influence what species may be expected to be found at any 
given location. When carrying out bird surveys in the field, 
context is derived from a combination of factors, including 
geographical location, topography, altitude, habitat type(s) 
and their structure, weather conditions, time of year/day and 
species behaviour. When processing ARD recordings much 
of this context is either not available or limited, making call 
identification potentially more challenging; for example, 
some habitat information can be gleaned from satellite and 
aerial photographs, but this is a poor substitute for being 
physically at the site. Using known presence/absence from 
existing species distribution data can also provide context 
to assist with identification of difficult calls, however, these 
data must be used with caution as they rely on assumptions, 
namely: (1) that the existing data are accurate and unbiased; 
and (2) the species range has not changed since the data were 
collected. A further potential drawback of relying heavily on 

existing distribution data is that it may lead to an increase in 
confirmation bias.

Another influential factor for ARD file processing is 
background noise, which can limit the detection of bird calls 
and lead to misidentifications (Simons et al. 2007; Brandes 
2008). Although background noise was limited to some extent 
in this study (i.e. excessively noisy recordings were excluded 
from processing), the assessment of suitability for processing 
was subjective and the noise present in the recordings processed 
could be responsible for some of the differences in species 
identification, or instances where a species was tagged by one 
processor only. It may be useful to determine an objective 
background noise level, using appropriate software, above 
which calls are difficult to hear or identify accurately, and use 
this to screen out noisy recordings. This screening would then 
standardise the maximum noise levels permitted in recordings 
to be processed.

A further disadvantage of ARDs is that they are currently 
audio-only devices and therefore limited to detection of birds 
that regularly vocalise or make other distinctive sounds. This 
limitation may not lead to misidentifications, but could result 
in under-recording of species that vocalise infrequently, such 
as kākā, New Zealand falcon Falco novaeseelandiae, and 
New Zealand pigeon Hemiphaga novaeseelandiae (although 
the latter has very distinctive wing-beats). If these species 
are missed, ARDs may prove unsuitable for their inventory 
or monitoring, whilst an observer has the potential to detect 
them visually.

One of the main limitations of this study is the absence 
of ‘correct’ answers to the species identifications. When 
processors disagreed on species identifications it was clear 
that at least one of them must have been incorrect (perhaps 
both of them), however, we could not say with certainty what 
was the correct identification. Therefore, our assessment 
was limited to agreement or disagreement. We have made 
the assumption that when both processors agreed on species 
identification, they were both correct. It is likely that in the 
majority of cases this is a safe assumption, however, it is 
entirely possible that there are instances when both processors 
agree but are both incorrect. Therefore, knowing the correct 
identification is essential for accurate quantitative analysis of 
error rates. With this in mind, we are currently developing a 
bird identification test, designed to quantify the accuracy of 
species identification. The purpose of this will be two-fold: (1) 
it will provide known identifications, and therefore error rates 
can be accurately measured; and (2) it will provide a means of 
objectively assessing a person’s bird identification skills, which 
can be used for observer/processor ability calibration. Such 
tests have been used previously for the latter. For example, 
in a programme for monitoring amphibians in North America 
the coordinators considered observer skill and inter-observer 
variation to be such important factors that participants were 
required to pass a test on amphibian vocalisations before being 
allowed to enrol (Dickinson et al. 2010).

The results of this study highlight some of the difficulties 
faced with bird call identification, which have implications not 
only for surveys utilising ARDs, but also for surveys employing 
field-based observers. To some extent, confidence in species 
identification in field-based surveys may be higher than for 
processed audio recordings for two reasons: (1) additional 
context is gained from the surrounding environment; and 
(2) visual clues provide additional information for species 
identification. Context is important in all situations, whilst 
visual clues may be limited in New Zealand forests, previous 
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studies have demonstrated that in these areas there is a heavy 
reliance on auditory cues for identification (Mortimer 2011; 
Dowding 2012). However, in the more open non-forest 
habitats visual information may be more important for species 
identification. It would be useful to investigate agreement/
disagreement levels between field observers, perhaps using 
the double-observer count method (Nichols et al. 2000; Forcey 
et al. 2006) or similar, and compare the results to those from 
processed ARD recordings.

In conclusion, agreement (and therefore confidence) in bird 
call identification varies widely between species, and this should 
be acknowledged when analysing and interpreting survey 
data from ARD or field-based surveys. To limit the amount of 
identification error, specific training on identification of known 
or suspected confusion pairs/groups should be provided, or 
alternatively, some species may be grouped together during 
analysis. Further research is required to investigate observer 
bird identification ability in the field, and quantify associated 
error rates.
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