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Abstract: Lethal control of wildlife is commonly used by conservation practitioners for population control. 
In some areas of New Zealand, changes in land-use and management have led to large increases in pukeko 
(Porphyrio melanotus melanotus) range and numbers. This native rail is sometimes considered a pest species, 
as they are known to uproot vegetation including tree seedlings, grass and crops. Here, we provide the first 
data on mortality during a lethal control operation that aimed to reduce pukeko population size at Tawharanui 
Regional Park in the North Island of New Zealand. We combined mortality records with individual measurements 
and colour banding re-sighting data to determine whether sex or dominance influenced survival. We found 
that frontal shield size (a strong proxy for social dominance) did not significantly influence the probability of 
being culled. There was also no significant difference in the probability of being culled between sexes. Our 
study provides important insights into mortality in a native species during lethal control, which could influence 
population recovery and social dynamics. 
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Introduction
Lethal control of wildlife is commonly used by managers and 
conservation practitioners to achieve various objectives (Treves 
& Naughton-Treves 2005; McManus et al. 2013). In some 
situations, lethal control can be an effective conservation tool by 
preventing the spread of disease, decreasing predation pressure 
on threatened species, and/or minimising human-wildlife 
conflict (Treves & Naughton-Treves 2005). Additionally, 
lethal control methods are often lower-cost and less labour 
intensive than alternative non-lethal techniques such as animal 
translocation (Linnell et al. 1997; McManus et al. 2013) or 
administering contraceptives (Massei & Miller 2013; Raiho et 
al. 2015). Lethal control methods have sometimes been highly 
controversial, in part because of ethical issues associated with 
killing wildlife and partly because of the mixed outcomes of 
some projects (Treves & Naughton-Treves 2005). For example, 
European badgers (Meles meles) have been culled in the United 
Kingdom for over three decades to prevent the transmission 
of bovine tuberculosis (TB) to cattle. However, one analysis 
comparing areas in which badgers were culled with areas that 
were not culled showed that the incidence of TB increased in 
cattle in areas where badgers were culled, bringing into question 
culling efforts and policies (Donnelly et al. 2003). Similarly, 
in a recent pūkeko (Porphyrio melanotus melanotus) cull, 
four Takahē (P. notornis hochstetteri), a critically endangered 
New Zealand endemic rail, were accidentally killed in the 
process, demonstrating that the practice of lethal control 
can have unforeseen ecological or conservation issues. With 
the increased awareness and support of animal rights and 
ethics, the tolerance for lethal control has generally decreased 

(Hadidian et al. 2002; Kirkpatrick & Frank 2005; Jackman & 
Rutberg 2015). As a result, there is now a need to justify the 
use of these methods with robust scientific evidence on their 
effectiveness and the consequences for managed populations 
(Warburton & Norton 2009). 

Exotic terrestrial mammalian predators have had a 
significant impact on New Zealand’s biodiversity, especially 
on native avian species (Innes et al. 2010). To help conserve 
native fauna, many areas of New Zealand are subject to predator-
control programs. The pūkeko is a native New Zealand rail that 
has proliferated due to changes in land-use and in some places 
has become a pest (Dey & Jamieson 2013). Their foraging 
habits can result in the uprooting of vegetation, including 
crops, tree seedlings and grass in livestock paddocks (Dey & 
Jamieson 2013). Additionally, pūkeko may prey on the young 
of other bird species. As a consequence, pūkeko are sometimes 
culled under permit despite limited knowledge of this practice 
on pūkeko populations and the wider ecosystem. 

Removing individuals from a population (e.g. through 
lethal or non-lethal control) can have a variety of impacts on 
population dynamics, including alterations to social networks 
and dominance hierarchies (Caughley et al. 1992; Shannon 
et al. 2013). This effect has been shown in experimental, 
theoretical and field studies where individuals are removed 
from their social groups (Monnin & Peeters 1999; Barrett et 
al. 2012; Kubitza et al. 2015). Such potential impacts should 
be investigated given that dominance relationships influence 
reproductive success in a variety of species (Ellis 1995) and 
therefore are likely to influence population growth rates. 
Additionally, if the chance of removal is biased towards 
individuals with specific traits then lethal control could cause 
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rapid evolutionary changes similar to those documented in 
populations subjected to hunting and fishing (Ginsberg & 
Milner-Gulland 1994; Swenson et al. 1997; Milner et al. 2007; 
Biro & Post 2008). Directed lethal and non-lethal control could 
take advantage of these relationships to reduce population 
growth and/or eliminate specific personality traits associated 
with problem individuals (Caughley et al. 1992; Julien 2007; 
McCarthy et al. 2013). However, achieving such management 
goals requires a strong understanding of patterns of mortality 
during lethal control programs, particularly if one category 
of individuals is more likely to be culled than others (Linnell 
et al. 1999; Treves & Naughton-Treves 2005). Therefore, it 
is important to study potential biases that may exist in lethal 
control practices and how these may have legacy effects in 
populations and the wider ecosystem. 

Here, we provide the first data on the influence of lethal 
control on pūkeko by investigating whether there is a sex-
bias among culled individuals and whether social dominance 
influences the probability of being culled. Since dominance 
relationships and social group structure influence reproductive 
success (Ellis 1995), understanding the influence of these 
variables on the probability of being culled will provide a 
valuable insight into population dynamics after a lethal control 
program. A better understanding of sex- and dominance-specific 
mortality would help determine optimal target reductions for 
lethal control and conservation goals. Pūkeko live in complex 
social groups (Dey & Jamieson 2013) that are structured as 
dominance hierarchies (Dey & Quinn 2014; Dey et al. 2014a). 
In this species, dominance interactions are known to differ 
between the sexes and are influenced by the size of the frontal 
shield ornament, which acts as a badge of status (Rowher 1975; 
Dey et al. 2014a). We hypothesised that dominant individuals 
would have greater exposure to the poisoned bread used to cull 
adults, since dominant individuals have been observed to have 
priority access to food (Dey & Quinn 2014). As a result, we 
predicted that dominant individuals would be more likely to 
be killed than subordinates. We also hypothesised that males 
would have greater mortality than females because they tend 
to be the first ones to approach novel objects (C. Dey pers. 
obs.) and are typically dominant over females (Jamieson & 
Craig 1987). Therefore, we predicted that male pūkeko would 
more likely be killed than female pūkeko. By conducting these 
analyses, we hoped to understand potential patterns of biased 
mortality that may arise as a result of pūkeko culls and their 
potential consequences for population dynamics. 

Materials and methods
Field methods 

The study was conducted at Tawharanui Regional Park, located 
in the North Island of New Zealand (36.3700° S, 174.8000° 
E). At this location pūkeko live in cooperative breeding groups 
that typically contain multiple breeding males and one to three 
breeding females that lay eggs in a shared nest. Groups may 
also include nonbreeding helpers of both sexes (sex ratio of 
study population pre-cull: n = 149 females, n = 107 males) that 
aid in raising the chicks. Pūkeko at this site have been studied 
since 2008 (Dey et al. 2014a), which has resulted in captures 
of a large number of individually colour-banded birds. Shield 
width, bill depth, shield-to-tip, nares-to-tip, tarsus length, 
wing chord and mass measurements were recorded at each 
capture event. Additionally, approximately 200 μL of blood 

was sampled from the brachial vein using a 1 ml syringe at 
each capture event. Group membership of banded adults was 
determined from detailed behavioural observations of territorial 
and non-territorial interactions (physical aggression as well 
as dominant and submissive postures; Craig 1977; Dey et al. 
2014a) from a camouflaged hide. Information on trapping 
and banding methods can be found elsewhere (Dey & Quinn 
2014; Dey et al. 2014a, b). Animal trapping and handling 
protocols were approved through permits from the McMaster 
University Animal Research Ethics Board (#13-10-37), the 
New Zealand Department of Conservation (DOC) Wildlife 
Authority (39641-FAU) and the DOC High Impact Research 
and Collection Permit (35048-FAU).

Lethal control methods

Between May and August 2014, 600 pūkeko were culled from 
Tawharanui as a means of population control under permit 
38671-FAU from DOC. Contractors for Auckland Council 
undertook the cull. Of the 600 birds that were killed, 108 
were banded from previous studies. Our sample includes 
culled individuals that were banded (n = 93), as well as 
banded members from their social groups that survived the 
cull (observed pre- and post-cull; n = 83). Culled birds that 
did not have pre-cull shield measurements (n = 17) were 
excluded from this analysis. 

The cull was undertaken to reduce a rapidly increasing 
pūkeko population (72% increase from 2010 to 2013; C. 
Dey unpubl. data). Auckland Council wished to determine 
if a drop in their numbers would improve the success of 
re-vegetation attempts and breeding of other native fauna at 
the park. Pūkeko are known for pulling up freshly planted 
vegetation and have been observed to depredate pāteke (Anas 
chlorotis) and paradise shelduck (Tadorna variegate) ducklings 
(M. Maitland, Senior Ranger – Open Sanctuaries, Auckland 
Council, pers. comm.).

Tawharanui includes a number of paddocks used for raising 
cattle and sheep. Targeted paddocks (n = 9) were surveyed 
for groups of pūkeko and a coloured stake was placed at each 
location where adult pūkeko had been spotted congregating. 
Pre-feeding with 12 small pieces of buttered bread at each 
stake was carried out for five days prior to the poisoning and 
the baits were monitored to confirm that pūkeko, and not other 
species, were taking the bread. After pre-feeding, the same 
number of poison baits (bread laced with alpha-chloralose) were 
placed at the stakes. Since alpha-chloralose acts as a narcotic, 
individuals were collected after consumption of poisoned bait 
and euthanized by cerebral percussion (i.e. a blow to the head). 
As a result, the direct cause of death for some birds was not 
the poison per se. Park personnel closely monitored activity 
at the baited stakes, therefore we are confident that few to 
no individuals that fed on the bait survived the poisoning. A 
post-mortem examination was completed by two researchers 
from Massey University. Shield and bill morphometrics were 
measured using calipers (±0.1 mm) and sex was determined 
by inspection of the gonads.

Molecular sexing

Molecular sexing was conducted to: (1) evaluate the accuracy 
of a novel technique to molecularly sex pūkeko by assessing 
the frequency with which molecular sexing (i.e. gel image 
scoring) correctly sexed culled birds (i.e. those whose true sex 
was known from gonadal examinations); and (2) determine 
the sex of birds that survived the cull.
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Most of the birds in our study were molecularly sexed (n = 
161 molecularly sexed) with the exception of 15 individuals for 
which we did not have blood samples. These birds were sexed 
using discriminant function analyses using measurements of 
nares to tip, bill depth, shield width and head length (culmen 
length + shield length) (Craig et al. 1980). Discriminant 
function based sex determination has been used to sex pūkeko 
(Craig et al. 1980; Dey & Quinn 2014) and is 89% accurate 
based on our sample of culled birds (JS Hing unpubl. data). 
Briefly, DNA was extracted via phenol-chloroform protocols 
and the DNA stock solution was diluted tenfold in Tris-EDTA 
(TE) buffer prior to Polymerase Chain Reaction (PCR). We 
then targeted the Nipped-B homolog (NIPBL) gene (Suh et 
al. 2011) following PCR conditions outlined in Griffiths et al. 
(2002). PCR products were then separated by electrophoresis 
for 90 minutes at 117 V cm-1 in a 2% agarose gel stained with 
7 μL Redsafe. 

Statistical analysis

All analyses were conducted in R version 3.1.2 (R Core Team 
2015), using the lme4 (Bates et al. 2014) package. We used a 
generalized linear mixed model (GLMM) with a binomial error 
to evaluate the effect of frontal shield size and sex on survival. 
Male pūkeko are generally larger than females (Jamieson & 
Craig 1987; Dey et al. 2014a); however, shield size does not 
significantly differ between the sexes after controlling for sex 
differences in body size (Dey et al. 2014a). Morphometric 
measurements for shield size from the most recent capture that 
preceded the cull (mean = 823.53 days, SD = 37.18) were used 
for this analysis. For individuals that were culled (and therefore 
available for measurement), pre-cull measurements of shield 
size were significantly predictive of morphometry at the time 
of the cull (shield size: n = 93, R2 = 0.26, P < 0.001). Both 
descriptive and experimental evidence suggests that shield size 
is a signal of dominance in pūkeko (Craig 1977; Dey & Quinn 
2014; Dey et al. 2014a). The response variable was survival, 

coded as a binary variable (1 = survived, n = 83: males = 49, 
females = 34; 0 = did not survive, n = 93: males = 49, females 
= 44). Paddock ID was included as a random intercept in this 
model to account for statistical non-independence of birds that 
were subject to similar lethal control effort. Since the number 
of individuals that survived or were culled was <5 for some 
paddocks, we fitted models with the Laplace approximation, 
as recommended by Bolker et al. (2008). We checked the 
assumptions of the model by looking at residuals versus fitted, 
quantile-quantile and scale location plots. We also looked at 
the ratio of residual deviance to residual degrees of freedom 
to check for over dispersion. 

Results 

Sex assignment by inspection of the gonads and molecular 
sexing matched for 90 out of 91 (98.9%) of the culled birds 
for which we had blood samples. The one mismatch was sexed 
as male by gonadal inspection but was confirmed as female 
multiple times when molecularly sexed.

Shield size did not significantly affect the probability 
of survival (estimate = 0.021, 95% CI = -0.068, 0.11, Z1 = 
0.46, P = 0.64, see Figure 1). There was also no significant 
difference in the probability of survival between males and 
females (estimate [males] = -0.22, 95% CI = -0.93, 0.50, Z1 
= -0.59, P = 0.55).

Discussion 

The costs and benefits of culling programs related to their 
desired outcomes for biodiversity protection are rarely 
investigated (Treves & Naughton-Treves 2005; but see Magella 
& Brousseau 2001; Donnelly et al. 2003). Culling undoubtedly 
has the potential to influence population demographics and 

Figure 1. The relationship 
between shield width (a proxy 
for dominance) and survival 
of male and female pūkeko (n 
=176 individuals pooled across 
nine paddocks). See methods 
for details of statistical analysis. 
Figure constructed using ggplot2 
(Wickham 2015).
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dynamics. We predicted that individuals with high dominance 
rank would suffer higher mortality rates during a cull of pūkeko. 
Contrary to what we predicted, dominant individuals were not 
less likely to survive. Increased mortality among dominant 
individuals was anticipated as they typically control access to 
food and were expected to monopolize access to poisoned bait. 
Since each piece of poisoned bread requires some handling time 
prior to consumption (M. Maitland pers. comm.), dominant 
individuals may have displaced subordinate individuals from 
the poisoned bait for prolonged periods of time. However, even 
if dominant individuals do displace subordinate individuals 
from feeding, subordinates may have been able to feed prior 
to the dominant individual’s arrival or once the poison bait 
started to exert its effect on dominant birds, increasing their 
probability of being culled. This may explain the lack of an 
effect of dominance on the probability of being culled. 

Additionally, our results suggest that there was no 
significant difference in the probability of survival between 
the sexes. Previous research has shown that culls targeted 
towards a specific sex can yield different responses in 
population dynamics (Mysterud et al. 2002; Gaillard et al. 
2003; Gordon et al. 2004) and are likely to depress population 
growth, particularly when post-cull sex ratios are extremely 
asymmetrical (Gordon et al. 2004). Since sex-biased survival 
can influence population growth (Mysterud et al. 2002; Gaillard 
et al. 2003), its potential consequences should be considered 
prior to culling operations. However, to our knowledge, no 
prior study has examined patterns of mortality during pūkeko 
culls. Since we did not observe a sex-bias in mortality during 
the cull, we predict that post-cull population growth will 
be rapid. Large-scale culls of pūkeko have been conducted 
previously at Tawharanui (e.g. in 2008), suggesting that the 
current frequencies of culls should be evaluated alongside the 
costs and benefits of culls when maintaining pūkeko populations 
below the size that managers desire.

Given that lethal control of pūkeko is expected to continue 
and this study is the first to assess the consequences of pūkeko 
culls, we provide insight into the possible implications of 
lethal control on pūkeko. In social species, the removal of 
individuals can have a drastic influence on social dynamics 
and reproductive behaviour. For example, in many cooperative 
breeders, breeding by subordinate individuals is socially 
suppressed by dominant individuals (Poiani & Fletcher 
1994; Cant 2000; Schoech et al. 2004; Bell et al. 2014) and 
the selective removal of dominant individuals (i.e. through 
lethal control) may provide males and/or females of lower 
dominance rank and competitive ability with access to breeding 
opportunities. Following this cull, extremely large pūkeko 
clutches (total clutch size = 15 or more eggs; compared with a 
typical average of five; Dey & Jamieson 2013) were observed, 
which may have been due to disruption, in some social groups, 
of stable dominance hierarchies that typically dictate access 
to copulations and egg laying (Jamieson & Craig 1987; Dey 
& Quinn 2014). 

Lethal control could also select for different personalities, 
which could influence the nature of social dynamics in surviving 
populations and future human-wildlife conflict. While we failed 
to observe a bias in mortality related to dominance rank, this 
does not exclude the possibility that bold individuals were the 
first to approach the poison bait and suffer higher mortality. 
Animal personalities have been described in many bird species 
and been shown to be heritable (Wilson et al. 1994; van Oers 
et al. 2003, 2004; Groothius & Carere 2005). Since most lethal 
control programs predominantly eliminate bold individuals 

(Linnell et al. 1999; Treves & Naughton-Treves 2005), they 
could cause rapid population-level selection similar to that 
produced by hunting (Mysterud 2011). Future research that 
includes measurements of personality (e.g. across the shy-bold 
spectrum) in individual pūkeko, the plasticity of personalities 
and possible correlates with other traits would be useful to 
understand potential selective influences of culls on pūkeko 
populations. 
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